
52nd Design Automation Conference

Maciej Ciesielski, Cunxi Yu, Walter Brown, Duo Liu
University of Massachusetts, Amherst, USA

Andre Rossi
Université de Bretagne-Sud - Lab STICC, France

Verification of Gate-level Arithmetic
Circuits by Function Extraction

Introduction

q Hardware verification
n Checking if the design meets specification

• Equivalence checking
• Property, model checking
• Functional verification ß

q Formal Verification methods
n Canonical diagrams (BDD), SAT, SMT

• Require “bit-blasting”, memory explosion
n Theorem proving

§ Requires good knowledge of the design, incomplete
n Computer Algebra

§ Complex math, CPU runtime limitation

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 2

Related Work

q Computer Algebra method [Wienand’08, Pavlenko’11, Kalla’14]

n Circuit represented in arithmetic bit level (ABL)
• Specification Fspec and implementation B defined as polynomials in Z2

n

• Reduce Fspec modulo B by polynomial divisions

n If r = 0, the circuit is correct
n Otherwise, canonical Groebner basis is

needed to determine if r = 0
• Must model all signals as Boolean

– include polynomials <x2-x> for all signals x
• Complex math, unnecessary

n Provided main motivation for our work

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 3

Fspec r

NOR

XOR

AND

HA

(gates, Add, Mult, etc.)

B

Implementation
Specification Fspec

Previous Work

q Linear Algebra Model [Basith FMCAD’11, Ciesielski HVC’13]

n Use linear algebraic model of the circuit

n Circuit represented as network of adders (HA, FA)
• described using only linear equations

n Logic gates derived from HAs (linear)

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 4

HA

C S

a b

a+ b = 2C + S

FA

C S

a b cin

a+ b+ cin = 2C + S

Linear Algebra Approach
q Input and Output Signatures

q Major limitations
n Limited to linear network of HAs with few connecting gates
n Translating gate-level to HA network (ABL) is difficult
n Difficult to extend to non-linear circuits

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 5

HA

C S

FA

C S

a0a1 b1 b0

z0z1z2

Transform
Sigin into Sigout

to prove that
SigIn = Sigout

Sigout = z0 + 2z1 + 4z2

Sigin = a0 + 2a1 + b0 + 2b1

This Work - Nonlinear Model

q Algebraic Model

q Main idea : Fspec = (Sigout-Sigin) ® 0 mod B
n replace by Sigin® Sigout (forward rewriting)
n or by Sigout® Sigin (backward rewriting)

q Gate-level rewriting
n Forward rewriting (PI ® PO)

• Polynomial division
• Replacing input expression by output expression

n Backward rewriting (PO ® PI) ß
• Replacing gate output by the expression in its inputs

– e.g., OR gate : z = a + b - ab
52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 6

¬a =1− a
a∧b = a ⋅b
a∨b = a+ b− ab
a⊕ b = a+ b− 2ab

OR
a
b

z

a1 a0b0b1

z1z2 z0

f0

f1

f2

f3

e d
c

g

Backward Rewriting - Method

q Example: 2-bit adder

n Rewriting example
• OR gate:

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 7

z0 + 2z1 + 4z2
z0 + 2z1 + 4(e+ g� eg)

ß

Transform
Sigout into Sigin

to prove that
SigIn = Sigout

Sigout = z0 + 2z1 + 4z2

Sigin = (a0 + 2a1)+ (b0 + 2b1)

logic

logic

logic

AOI21

logic

Backward Rewriting - Issues
q Rewriting issues

n Ordering of rewriting affects performance
n Internal expressions may explode: “fat-belly” issue
n Technology mapped circuits contain complex gates

§ AOI21, OAI221, etc.
n Heavily optimized circuits are difficult

q Heuristics
n Properly ordered rewriting

§ Topological, dependence
n Handles complex gates

• Provide cuts in complex gates
n Binary signals modeled by x2® x

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 8

Results – CPU Performance

q Performance for original & lightly synthesized designs
n Synthesis performed by ABC “resyn”
n Verified designs

• Multipliers, matrix multiplier, A*B+C, squarer, etc.
• Up-to 5 million gates
• 256+ bit-widths

n ~Linear CPU time
n Memory : quadratic

in # gates

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 9

Comparison with Other Methods
n SAT

n used ABC “miter”
n SMT

n Algebraic model, similar to ours
n Boolean model, similar to SAT

n Formality (Synopsys)

TIME OUT = AFTER 3600 SEC

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 10

XOR
=?0

Multiplier

Ref. Mult

CSA-Multiplier
Our [sec]

SAT SMT Commercial
Op size # gates Lingling Boolector Formality

4 86 0.01 0.01 0.01 0.81

12 481 0.04 TIME OUT 2030.91 108.1

64 41.4 K 5.50 - TIME OUT 675.4

128 164 K 39.64 - - TIME OUT

Conclusions

q Functional verification by extracting arithmetic function
q Method: backward rewriting

n Extracts the function of arithmetic circuits
n Correctly model Boolean signals
n More effective than forward, but complex

q Limitations
n Less efficient for highly bit-optimized arithmetic circuits
n Potential memory explosion
n Bit composition of the output needs to be known

q Future work
n Diagnostics and logic debugging (using back/forward rewriting)
n Application to floating-point and cryptographic arithmetic circuits

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 11

Thank you !

52ndDAC: Verification of Gate-level Arithmetic Circuits by Function Extraction 12

