
IMpress: Large Integer Multiplication
Expression Rewriting for FPGA HLS

Ecenur Ustun1, Ismail San2,1, Jiaqi Yin3, Cunxi Yu3, Zhiru Zhang1

1School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
2Department of Electrical and Electronics Engineering, Eskişehir Technical University, Eskişehir, Turkey

3Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA
{eu49, zhiruz}@cornell.edu

Abstract—Large integer multiplication is becoming a major
challenge for FPGA-based acceleration of many cryptographic
applications. Existing techniques for decomposing and optimiz-
ing large integer multiplication bring about nontrivial trade-
offs between different resource types as well as performance.
In this work, we regard determining the level and order of
multiplication decomposition as a phase ordering problem, which
is a notable problem in compiler optimization. Our framework,
IMpress, leverages equality saturation to automatically produce
a wide range of equivalent integer multiplication expressions
corresponding to various hardware implementations. We devise
constrained and multi-objective extraction techniques to auto-
matically choose the optimal expressions based on the resource
requirements of a given application. IMpress automatically trans-
lates extracted integer multiplication expressions into behavioral
descriptions in C++ and initiates FPGA compilation through
high-level synthesis. IMpress offers significant control over re-
source utilization and balance, and it increases the maximum
number of instances of cryptographic applications on FPGA.

I. INTRODUCTION

Recent years have seen an increasing number of FPGA-
based accelerators to improve the performance and energy
efficiency of various cryptographic algorithms and applica-
tions such as RSA [1], [2], [3], elliptic-curve cryptography
(ECC) [4], [5], and homomorphic encryption (HE) [6], [7],
[8], [9], [10]. These cryptographic applications have high
arithmetic intensity due to the extensive use of large integer
multiplications that take on operands with hundreds or thou-
sands of bits. However, it remains challenging to efficiently
implement large integer multiplication on FPGAs due to the
lack of efficient libraries and compiler support.

There are a number of techniques for generating high-
performance and energy-efficient integer multipliers on FP-
GAs, such as Karatsuba decomposition [11], [12], [13], [14],
[15] and number-theoretic transform (NTT) [16], [12], [17].
Each decomposition technique brings about a trade-off be-
tween different resource types (LUTs and DSP blocks) and
performance. For instance, Karatsuba reduces the number of
partial products at the cost of more addition operations, which
results in a DSP-LUT trade-off. Deeper levels of decomposi-
tion intensify this trade-off. Given the area and performance
requirements of an application, determining the optimal level

and order of decomposition is a nontrivial task, which has not
been addressed by the previous work.

Determining the optimal level and order of decomposition
rules for large integer multiplication can be considered as a
phase ordering problem, which is frequently encountered in
compiler optimizations. A certain decomposition rule may lead
to lower quality-of-results (QoR) at a given level. However,
being followed by other decomposition rules in the subsequent
levels, one can eventually achieve an integer multiplication
implementation with a high quality. In other words, a trans-
formation which is locally suboptimal may lead to globally
optimal results based on a single objective or Pareto-optimal
results based on multiple objectives, after being followed by
other transformations, or vice versa.

Equality saturation is a promising solution to addressing
some of the phase ordering problems in compiler optimiza-
tion [18], [19]. Given an input program, equality saturation
constructs an e-graph, a graph-based data structure, by re-
peatedly applying a set of rewrite rules that do not change
the functionality of the program. After reaching saturation
(or timeout), the resulting e-graph will represent, often in a
compact way, a large set of equivalent expressions of the input
program. The rewrite can be a compiler transformation or in
our case a decomposition rule for integer multiplication. Since
these rewrites only add information to the e-graph, careful
phase ordering is not required.

In this work we propose IMpress, an integer multiplication
expression rewriting framework that exploits the expressive
power of equality saturation to optimize the FPGA imple-
mentation of large integer multiplications. We use multiplica-
tion decomposition rules at various bitwidths and DSP tiling
patterns at low bitwidths as our rewrite rules for equality
saturation. Bringing together a wide range of arithmetic trans-
formations and resource mapping patterns, e-graphs generated
by IMpress contain extensive ways to rewrite an integer
multiplication. Consequently, one major challenge is extracting
the optimal expression(s) from the e-graph. Although the e-
graph is constructed to be as compact as possible, it contains
a tremendous number of expressions which makes optimal
extraction a nontrivial task. Previous efforts have developed
heuristics and exact algorithms for extracting the optimal
expression for a single objective [19], [20], [21], [22], [23].
However, our problem copes with multiple objectives such as978-1-6654-8332-2/22/$31.00 ©2022 IEEE

different resource types on an FPGA. A recent study devel-
oped an iterative feedback-driven expansion and contraction
approach to produce Pareto-optimal expressions for multiple
objectives [24]. IMpress, on the other hand, offers an exact
integer linear programming (ILP) formulation which supports
both constrained and multi-objective optimization, giving the
users the flexibility to choose the most suitable strategy for
their application requirements.

IMpress translates an extracted custom integer multiplica-
tion expression into a behavioral description, which is then
synthesized into hardware using high-level synthesis (HLS).
HLS allows faster hardware development through faster design
cycles and hardware customization opportunities at a high
abstraction [25], [26], [27]. HLS tools offer users the option
to choose the hardware resource type to use for a specific
operator. However, existing HLS tools do not provide the
option to set an upper limit to a specific resource type,
especially LUT. Through expression rewriting, IMpress allows
users to balance the utilization of different resource types at
the HLS level. IMpress extends its equality saturation rules
beyond arithmetic decompositions to DSP tiling patterns. With
both coarse-grained transformations at the arithmetic level and
fine-grained transformations at the DSP block level, IMpress
offers a significantly richer design space and consequently
better support for a wider range of applications. Moreover, our
approach can be coupled with the allocation and scheduling
strategies recently proposed by Langhammer et al. [11] to
generate an architecture that meets certain throughput goals.
Our main technical contributions include:
• IMpress is the first work to optimize integer multiplication

on FPGAs by performing equality saturation and producing
various equivalent expressions with different hardware costs
while avoiding the phase ordering problem.

• IMpress builds a cost model to accurately estimate the
hardware cost of multiplication expressions and offers con-
strained and multi-objective extraction tailored to optimizing
resource utilization based on application requirements.

• IMpress translates an extracted multiplication expression
into C++ code for HLS, followed by downstream FPGA
design stages. IMpress offers significant control over re-
source utilization and balance, and it increases the maximum
number of instances of cryptographic applications on FPGA.

II. PRELIMINARIES

A. Large Integer Multiplication

There are several popular decomposition methods that op-
timize the performance of large multiplications [28]. School-
book decomposition uses the basic textbook method to decom-
pose each operand into two parts and performs four partial
products followed by a summation. Karatsuba decomposes
operands as in the schoolbook approach, but uses a clever
rewriting to reduce the number of partial products from 4 to
3 [29], [30]. Toom-Cook multiplication is a generalization of
Karatsuba in which operands can be split into 2 or more parts
and splitting into more parts results in asymptotically faster

implementations [31]. Comba multiplication extends classical
approaches with a scheduling strategy over the summation of
partial products [32]. At significantly high bitwidths, such as
a million bits, asymptotically faster approaches such as fast
Fourier transform (FFT) are used [33].

B. Equality Saturation
Expression rewriting [34] is a search-based approach used

in theorem proving [35], [36] and program optimization [37],
[18]. Rewrite rules encode equivalences between different
expressions and are potential transformations that can be
applied to a given specification during expression rewriting.
Traditional optimization approaches destructively modify pat-
terns in the original specification by sequentially selecting a
path from an exponential number of choices. Such methods
often lead to suboptimal results due to the suboptimal graph
substitution heuristics aimed at overcoming the exponential
growth in enumerating the possible rewriting solutions.

Equality saturation [18], [38], [39] performs non-destructive
rewriting efficiently and overcomes the limitations of tradi-
tional rewriting engines, including the phase ordering prob-
lem [19]. The basic data structure used in equality saturation
is an e-graph [40], [41]. An e-graph represents a congruence
relation over expressions and it builds upon many equivalence
relations over e-classes and e-nodes. Each e-node, denoted
by a function symbol, represents an expression. Each e-class,
which can contain one or more e-nodes, represents equivalent
expressions. An e-graph is basically a set of e-classes.

Equality saturation is used to optimize an input specification
as follows. First, an e-graph is constructed from the original
specification and iteratively updated by applying rewrite rules
until saturation or a timeout. Then, the best expression is
extracted from the e-graph. Current state-of-the-art open-
source equality saturation tool provides an extractor [19]. It
is based on a heuristic which selects the lowest-cost e-node in
each e-class from the leaf e-classes to the root e-class.

III. MOTIVATIONAL EXAMPLE

We conduct a case study on 256-bit integer multiplication
to motivate equality saturation and multi-objective extraction.
Specifically, we list three implementations of 256-bit integer
multiplication in Table I, namely the default HLS implemen-
tation, the schoolbook decomposition, and the Karatsuba de-
composition. These three implementations are Pareto-optimal
because among these solutions, DSP utilization cannot be
reduced without sacrificing LUTs, and vice versa.

If we consider further decomposing all 128-bit partial
products using Karatsuba decomposition, our new set of
implementations becomes the list in Table II. One of such
implementations, i.e., Schoolbook+Karatsuba, is illustrated in
Fig. 1. This implementation does not yield a Pareto-optimal
solution because it is dominated by the 1-level Karatsuba
implementation in terms of both DSP and LUT utilization. In
other words, although schoolbook decomposition alone yields
a Pareto-optimal solution in the first level of decomposition
at 256 bits, when followed by Karatsuba decomposition at

mul
256

mul
128

mul
128

mul
128

mul
128

mul
64

mul
64

mul
65

mul
64

mul
64

mul
65

mul
64

mul
64

mul
65

mul
64

mul
64

mul
65

Fig. 1: Schoolbook followed by Karatsuba decomposition of 256-bit
integer multiplication. Each node is a partial product implemented
using DSPs and LUTs. Cloud shapes represent the summation of the
partial products and are implemented using LUTs.

128 bits, it no longer yields a Pareto-optimal solution. Due
to such scenarios where suboptimal solutions originate from
locally optimal decisions, or vice versa, it is nontrivial to find
the optimal combination of different decompositions.

This example also illustrates the trade-off between two
FPGA resources, i.e., DSPs and LUTs. Such a trade-off be-
comes essential when a very complex design is being mapped
to an FPGA device. If we extract an optimal expression based
on only one resource type, we may end up exceeding the
utilization limit for the other resource type. In Sections V-E2
and V-E1, we show that a good balance between these two
resource types achieved through our multi-objective extraction
strategy increases the maximum number of instances of a given
design on an FPGA device.

IV. APPROACH

IMpress finds the most efficient implementation(s) of a
given bit-accurate integer multiplication on an FPGA by (1)
constructing an e-graph and performing equality saturation
(Section IV-A), (2) extracting the optimal expression(s) from
the saturated e-graph (Section IV-B), (3) transforming the
optimal expression(s) to HLS C++ code and integrating them
into the full application for FPGA synthesis (Section IV-C).
IMpress can optimize multiplications with powers-of-two sizes
which are typically used in cryptographic applications. Such
applications use bitwidths ranging from 512 to a million bits
depending on the algorithm and scheme.

TABLE I: Design points with up to one level of decomposition.

Implementation DSP LUT
HLS Default 225 226
Schoolbook 200 4,803
Karatsuba 164 5,050

TABLE II: Some design points with up to two levels of decompo-
sition.

Implementation DSP LUT
HLS Default 225 226
Schoolbook 200 4,803
Karatsuba 164 5,050

Schoolbook + Karatsuba 192 6,026
Karatsuba + Karatsuba 144 6,141

A. Equality Saturation for Large Integer Multiplication
Given an input program and a set of rewrite rules, equality

saturation constructs an e-graph of all equivalent expressions.
IMpress takes a bit-accurate integer multiplication as input and
defines a set of rewrite rules using multiplication decomposi-
tion and resource mapping patterns. As shown in Eq. (1), k
rewrite rules constitute the set R. The number of rewrite rules
k for each bit-accurate multiplication is listed in Table IV. A
rewrite rule, hli, rii, transforms the left-hand expression li to
the right-hand expression ri. Rewrite rules are applied in each
iteration until the e-graph is saturated or a timeout is reached.

Our first set of rewrite rules (Eq. (2)) transform an i-bit
integer multiplication muli to its schoolbook decomposition
schoolbook(muli). Schoolbook method is given in Eq. (7).
In the last line, we substitute the addition of the first and last
term with the zero-cost concatenation operation &. A graphical
representation of this rule is given in Fig. 2, where each node
is a hardware operator and its children are the operands to it.

R = {hli, rii| i 2 {0, 1, ..., k � 1}} (1)
hmuli, schoolbook(muli)i 2 R, i 2 {32, 64, ..., 512, ...} (2)
hmuli, karatsuba(muli)i 2 R, i 2 {32, 64, ..., 512, ...} (3)

hmuli,muli�1i 2 R, i 2 {17, 33, ..., 257, ...} (4)
hmul32, tilingi(mul32)i 2 R, i 2 {0, 1, 2, 3, 4} (5)
hmul16, tilingi(mul16)i 2 R, i 2 {0, 1} (6)

a = ah2
n/2 + al b = bh2

n/2 + bl (7)

a · b = ahbh2
n + (ahbl + albh)2

n/2 + albl

= ((ahbh)&(albl)) + (ahbl + albh) ⌧ n/2

Our second set of rewrite rules (Eq. (3)) transform an i-
bit integer multiplication muli to its Karatsuba decomposition
karatsuba(muli). Karatsuba uses Eq. (8) to reduce the num-
ber of partial products in the schoolbook decomposition from
4 to 3, at the cost of more addition/subtraction operations. A
graphical representation of this rule is given in Fig. 3.

ahbl + albh = (ah + al)(bh + bl)� ahbh � albl (8)

Karatsuba decomposition of an n-bit multiplication pro-
duces an (n/2+1)-bit multiplier. In order to enable further de-
composition of this odd-bit multiplier using either schoolbook
or Karatsuba, we add another set of rewrite rules (Eq. (4))
which decompose an odd-bit multiplication muli into an
even-bit multiplication muli�1. Decomposition of an odd-bit
multiplication is given in Eq. (9), where each operand is first
split into two parts :1 (i.e., most significant n-1 bits) and 0:0
(i.e., the least significant bit), and then the multiplication is
constructed from the partial products of these parts.

a = 2a:1 + a0:0 b = 2b:1 + b0:0 (9)
a · b =

((a:1b:1) ⌧ 2 + (a:1b0:0 + a0:0b:1) ⌧ 1):1&(a0:0 ^ b0:0)

add
2n

add
n

&<<

mul
n/2

mul
n/2

n/2 mul
n/2

mul
n/2

ah bh al bl

al bh ah bl
Fig. 2: Schoolbook decomposition of integer multiplication a⇥ b as
a hardware-friendly rewrite rule. Both a and b are n-bit integers. The
number at the bottom of add/mul nodes is the operation bitwidth.

add
2n

&

<<

mul
n/2+1

n/2

mul
n/2

mul
n/2

ah bh al blal ah

sub
n+2

add
n

add
n/2

bl bh

add
n/2

Fig. 3: Karatsuba decomposition of integer multiplication a⇥ b as a
hardware-friendly rewrite rule. Both a and b are n-bit integers. The
number at the bottom of add/sub/mul nodes is the operation bitwidth.

Our last sets of rewrite rules are based on DSP block
tiling. In Eq. (5), a 32-bit multiplication mul32 can be im-
plemented with five tiling patterns tilingi(mul32) with DSP
block utilization i ranging from 0 to 4. The example in Fig. 4
represents an implementation of 32-bit multiplication using 3
DSP blocks, corresponding to tiling3 in Eq. (5). In Eq. (6),
a 16-bit multiplication mul16 can be implemented with two
tiling patterns tilingi(mul16) with either 0 or 1 DSP block.
Each of our rewrite rules brings about a DSP-LUT trade-off.

Equality saturation is typically performed over syntactic
rewrites. However, IMpress deals with bit-accurate operations
and needs to distinguish the cost of different-bitwidth oper-
ators of the same type. Therefore, as part of our equality

4

1

2

3

26 bits6 bits

23 bits
9 bits

26
 b

its
6

bi
ts

Fig. 4: Tiling of 32-bit integer multiplication. For example, assuming
a 26⇥23 DSP block size, each of the regions 1, 2, and 3 can be
mapped to a DSP block and region 4 can be implemented with LUTs.

TABLE III: Primitive operators used by IMpress in equality sat-
uration, expression extraction, and code generation for a 1024-bit
multiplication.

Operator Type Bitwidth

add 16, 17, 32, 33, 34, 64, 65, 66, 128, 129, 130
256, 257, 258, 512, 513, 514, 1024, 1026

sub 34, 66, 130, 258, 514, 1026
mul 16, 32, 64, 128, 256, 512, 1024
and 1, 16, 32, 64, 128, 256, 512

saturation framework, we define bit-accurate operators carry-
ing both the operation type and the bitwidth information such
as add128. This allows us to rewrite a multiplication at any
level and build accurate hardware cost models which in turn
helps determine the optimal rewriting scheme. We identify the
primitive operators used by our rewrite rules, create a library
of those, and pre-characterize their hardware cost for the
extraction (Section IV-B) and code generation (Section IV-C)
phases. Pre-characterization includes assigning a LUT cost and
a DSP cost to each bit-accurate operator and penalizing certain
operators that cause timing failures by assigning large costs
to them. Table III lists our bit-accurate primitive operators
that are used to rewrite a 1024-bit multiplication. These are
synthesized individually on the FPGA device and their costs
are parsed from post-implementation reports.

The compactness of an e-graph stems from shared sub-
expressions. The fact that we have different rewrite rules
having common sub-expressions boosts the compactness of
our e-graphs. Fig. 5 is a relatively small e-graph we can
obtain for 32-bit integer multiplication. The expression rooted
at the blue-shaded “&” is shared by our schoolbook and
Karatsuba rewrite rules and the expressions rooted at the blue-
shaded “add16” are shared between odd multiplication and its
transformation into even multiplication. We also have sharing
within a rewrite rule, as illustrated by the blue-shaded “�”.

B. Optimal Expression Extraction

Given an e-graph, our goal is to extract the optimal ex-
pression, or a set of expressions, which satisfy our objective.
In Fig. 5, nodes of an expression, which corresponds to a
Karatsuba decomposition, are highlighted. Extraction can be
thought of as selecting e-nodes from e-classes such that each e-
class in the final expression contains one e-node. IMpress sup-
ports both constrained single-objective extraction and multi-
objective extraction. The former approach, as described in
Section IV-B1, can be used to minimize LUTs while setting
an upper bound on DSPs. The latter, as described in Sec-
tion IV-B2, can be used to find Pareto-optimal solutions for the
co-minimization of LUTs and DSPs. We assume an additive
cost model where the cost of an expression is the summation
of the cost of the e-nodes that remain after extraction.

1) Constrained Single-Objective Optimization: We formu-
late the extraction of an optimal expression using integer linear
programming (ILP). Our ILP formulation assigns a decision
variable xni to each e-node i, indicating whether the e-node is
present in the final expression or not. Each e-class j is assigned

add
64

add
32

<<

mul
16

mul
16

16

add
64

&

<<
mul
17

mul
16

mul
16

sub
34

add
32

add
16

add
16

mul
32

& part
sel

add
34

add
17

<<
<< <<

and
16

and
16

mul
16

1

2

and
1

>>>>

<<<<

>>>>

Fig. 5: E-Graph of 32-bit integer multiplication based on rewrite rules (2) and (3) for i = 32 and rule (4) for i = 17. Each node is an
e-node corresponding to an operator or a constant. Each dashed rectangle is an e-class. Each e-class can contain multiple e-nodes that satisfy
the equivalence relation. The root e-class, which expresses the input program, is highlighted in green. Nodes of an example expression are
highlighted in rose pink. Root e-classes of the sub-expressions that are shared across different rewrite rules are highlighted in blue.

a decision variable xcj to drive the selection of e-nodes from
e-classes. These variables are used to construct the linear
constraints and the linear objective in our ILP formulation.

Constraints (15) and (16) ensure that the decision variables
xni and xcj are binary variables. xni = 1 indicates that e-node
i is present in the final expression while xni = 0 indicates
otherwise. Similarly, xcj = 1 indicates that e-class j is used to
extract the final expression while xcj = 0 indicates otherwise.
Constraint (14) ensures that the final expression is drawn from
the root e-class. Constraint (11) ensures that if an e-node is
selected for the final expression, then all of its children e-
classes must be used. If xni = 1, then xcj for each and every
j 2 childreni can only be 1. If xni = 0, then xcj can be either
0 or 1. In other words, the fact that e-class j is used does not
imply that e-node i is selected since e-classes can be shared
across the e-graph. Constraint (12) implies that if an e-class is
used, then one of its e-nodes must be in the final expression.
If an e-class is not used, then none of its e-nodes exist in
the final expression. Constraint (13) sets an upper bound on
DSP consumption in the final expression. dspi is the DSP
consumption of e-node i. The upper bound dsp limit is to be
specified by the user based on their application requirements.
Finally, objective (10) minimizes LUT consumption in the
final expression. luti is the LUT consumption of e-node i.

minimize
X

i2enodes

luti · xni (10)

xni � xcj 0, 8i 2 enodes, 8j 2 childreni (11)

xci �
X

j2enodesi

xnj = 0, 8i 2 eclasses (12)

X

i2enodes

dspi · xni dsp limit (13)

xcroot eclass = 1 (14)
xni 2 {0, 1}, 8i 2 enodes (15)
xcj 2 {0, 1}, 8j 2 eclasses (16)

2) Multi-Objective Optimization: In this step, we extract
Pareto-optimal expressions from a saturated e-graph by ap-
plying the "-constraint method [42] to our previous ILP
formulation. The idea behind the "-constraint method is to
transform all objective functions except one to additional
constraints as fi <= " and so leave a single objective. A
single run of this method produces a single weakly Pareto-
optimal solution. In order to obtain the Pareto frontier, one
can re-run the ILP solver with all possible dsp limit values.
To find the lower bound of dsp limit, we can solve our
ILP formulation after omitting constraint (13) and replacing
objective (10) with objective (17). To find the upper bound of
dsp limit, objective (10) is replaced with objective (18).

minimize
X

i2enodes

dspi · xni (17)

maximize
X

i2enodes

dspi · xni (18)

C. Code Generation and Synthesizing the Application

We translate rewritten integer multiplication expressions to
C++ code for HLS. We do so by searching for rewrite patterns
from lower to higher bitwidths in the expression graph, and
replacing them with the corresponding fused multiplication
operation. As an example, we first search for Fig. 2 for
n=32 and replace it with a fused node mul32 with label
schoolbook. Once all rewrite patterns corresponding to 32-bit
integer multiplication are searched for, we proceed with n=64,
n=128, ..., until the input bitwidth. We use an implementation
of the VF2 algorithm [43] provided by Networkx [44] to
perform subgraph isomorphism that matches rewrite patterns
with subgraphs in the expression graph. When all patterns are
searched for, we instantiate C++ functions that perform the
matched patterns. The last step is to insert the C++ code into
the full application, followed by FPGA design stages HLS,
logic synthesis, placement, and routing.

V. EVALUATION

Section V-A shows the scalability of our equality sat-
uration framework with increasing multiplication bitwidths.
Section V-B evaluates the performance of IMpress for a
single objective. Section V-C evaluates the performance of
IMpress for multiple objectives. Section V-D measures the cost
model accuracy of IMpress, which is used to extract optimal
integer multiplication expressions. Section V-E evaluates the
effectiveness of IMpress in two cryptographic applications.
Our framework is applicable to any FPGA device. In our
evaluations, we target Alveo U250 part xcu250-figd2104-2L-e
at 300 MHz due to their increasing adoption in cryptography.
For FPGA synthesis, we use AMD Xilinx Vitis HLS and
Vivado v2020.2. All integer multiplications are pipelined in
HLS with an initiation interval of 1.

We use an open-source framework called egg to perform
equality saturation [19]. egg allows users to provide their own
set of syntactic rewrite rules and provides a single-objective
extractor as described in Section II-B. We perform two types of
rewriting verification. First, we perform translation validation
on our extracted expression. This ensures that the input integer
multiplication and the extracted expression are equivalent for
the given set of rewrite rules. Translation validation is provided
by egg. Second, we perform C-simulation and C/RTL co-
simulation after integrating the HLS implementation of our
custom integer multiplier into the full application.

A. Scalability Analysis
We evaluate the scalability of the equality saturation frame-

work in Table IV in terms of the time it takes to saturate
the e-graph, the number of e-node, the number of e-classes,
and the number of expressions that can be extracted from the
e-graph. With a few rewrite rules, a tremendous number of
expressions can be represented in a graph as small as hundreds
of nodes. As we increase the multiplication bitwidth and
thereby the number of rewrite rules, the growth in the e-graph
size is significantly slower than the growth in the number of
expressions. Although we evaluate IMpress for multiplications
up to 2048 bits, the framework can easily be extended to higher
bitwidths and supported by other decomposition techniques.
For instance, NTT can be coupled with IMpress to optimize
million-bit multiplications as shown in Section V-E1.

B. ILP vs Existing Heuristic for a Single Objective
We evaluate the effectiveness of our ILP formulation versus

egg’s bottom-up heuristic in optimizing a single objective. The

TABLE IV: Scalability of our equality saturation framework for
different input bitwidths and sets of rewrite rules.

Input
Size

Rewrite
Rules

Sat.
Time (s) E-Nodes E-Classes Expr.s

64 10 0.01 252 194 1.08e6
128 13 0.06 1,171 878 1.37e24
256 16 0.29 5,546 4,078 3.55e96
512 19 1.51 26,769 19,426 1.58e386

1,024 22 8.60 130,936 94,218 6.31e1544
2,048 25 49.19 645,935 462,342 1.59e6179

objective is defined to be the weighted sum of LUTs and DSPs.
The weights are determined based on the available resources
on the given FPGA device.

objective = w ⇥ #DSPs+ #LUTs (19)

w =
#Available LUTs

#Available DSPs
For different integer multiplication bitwidths, Table V lists

the post-placement costs of the expressions found by egg’s
extractor versus expressions found by IMpress using ILP
formulation with CPLEX. For the same set of inputs, Table V
also lists the time it takes to perform the extraction. At very
low bitwidths, i.e., 64 bits, egg’s bottom-up heuristic and
IMpress have the same performance in terms of both final
cost and runtime. As the bitwidth increases, IMpress produces
higher-quality expressions within a comparable time frame.
Our ILP formulation finds lower-cost implementations because
egg’s heuristic is based on the assumption that a minimum-cost
expression originates from the minimum-cost subexpressions,
which is not a valid assumption in the existence of common
subexpressions in the e-graph [21]. ILP formulation will take
considerably longer to optimize for bitwidths higher than 1024
due to the exponential increase in the number of variables and
constraints. However, as shown in Section V-E1, the efficiency
of the FFT/NTT algorithms at extremely large bitwidths can be
coupled with the flexibility of IMpress at 2048 or lower bits to
create design points with optimized resource and performance.

C. Expression Rewriting with Multiple Objectives
Table VI lists costs of different implementations of 1024-

bit multiplication, including the default HLS implementation,
different levels of Karatsuba decomposition, and IMpress.
IMpress-1 is obtained using the single objective strategy
from the previous section. IMpress-2 is obtained through
DSP-constrained LUT minimization such that the percentage
utilization of both LUTs and DSPs is balanced at around 7%.

TABLE V: Comparison of single-objective extraction techniques.

Bitwidth Post-Placement Cost Runtime (s)
egg IMpress egg IMpress

64 1,823 1,823 0.01 0.01
128 6,698 6,466 0.02 0.03
256 25,359 22,399 0.11 0.09
512 85,117 78,434 0.63 0.50

1,024 278,265 264,610 2.72 4.07
2,048 1,101,986 883,931 18.26 45.33

TABLE VI: Resource utilization, latency, and frequency of 1024-bit
multiplication when synthesized using the default HLS implementa-
tion, Karatsuba decompositions, and IMpress.

Method DSP LUT Latency
(cycles)

Freq
(MHz)

HLS Default NA NA NA NA
3-level Karat. 1,476 71,893 17 256
4-level Karat. 1,296 88,986 21 305
5-level Karat. 972 126,193 21 302
6-level Karat. 729 165,618 24 298

IMpress-1 810 150,400 23 250
IMpress-2 945 129,338 22 295

Fig. 6: Post-placement LUT and DSP utilization of 64-bit integer
multiplication expressions extracted by different approaches.

Fig. 7: Post-placement LUT and DSP utilization of 256-bit integer
multiplication expressions extracted by different approaches.

We measure Pareto-efficiency of IMpress in optimizing
multiple objectives. For this analysis we target 64-bit integer
multiplication, because as previously shown in Table IV, it
becomes intractable to exhaustively collect and synthesize all
expressions at higher bitwidths. As identified based on the
exhaustively collected results shown in Fig. 6, there are 14
expressions constituting the Pareto frontier. IMpress generates
12 of these expressions. The 2 non-Pareto-optimal expressions
found by IMpress (at DSP=4 and DSP=7) have the same DSP
utilization and only 2% higher LUT utilization compared to
the corresponding Pareto-optimal expressions.

Fig. 7 shows the post-implementation cost of all 256-
bit multiplication expressions found by our multi-objective
extractor. The expression found by IMpress using the single
objective strategy from the previous section is marked in green.
The figure also includes the expressions corresponding to the
default HLS implementation and different levels of Karatsuba.
This study illustrates the flexibility IMpress offers in control-
ling and balancing the utilization of different resource types.

D. Cost Model Accuracy

Due to optimizations performed during logic synthesis and
placement, our cost model is not expected to be fully accurate
compared to post-implementation results. We measure the
accuracy of our DSP and LUT estimations based on R2,

Pearson, and Spearman accuracy metrics. R2, the coefficient of
determination, represents how well the variation in the output
can be explained based on the inputs to the model. The Pearson
coefficient represents the linear correlation between estimates
and actual values. Spearman’s rank correlation coefficient
represents the monotonic relationship between estimates and
actual values. Coefficients that are close to 1 represent high
accuracy. Accuracy score of DSP estimation is 1 for all met-
rics, regardless of the bitwidth. This is essential for constrained
optimization where constraints are based on DSP utilization.
R2 score in LUT estimation, which is 0.94 at 64 bits, gradually
decreases as bitwidth increases. For instance, it becomes 0.92
at 128 bits. Pearson and Spearman correlation scores are 1 for
both LUT and DSP estimation regardless of the bitwidth. Since
we perform LUT minimization in both constrained and multi-
objective settings, our high LUT correlation scores translate
to successful optimization in IMpress at any bitwidth.

E. Cryptographic Applications
We evaluate the effectiveness of IMpress in two cryp-

tographic applications, namely integer-based HE and RSA.
We show that IMpress helps resolve placement issues, and
compared to other decomposition approaches it allows more
instances of these applications to fit on a given FPGA device.

1) Integer-Based HE: Fully homomorphic encryption
(FHE) allows computation of arbitrary functions on encrypted
data. A solution to this problem has been first proposed by
Gentry [45], [46]. Some FHE schemes are based on ring
learning with errors [47], [48] which require polynomial
multiplications over rings, and some FHE schemes are based
on very large (million-bit) integer arithmetic [49], [50], [51].

The Schönhage–Strassen algorithm is a fast multiplica-
tion algorithm for very large integer operands. It performs
better than the classical methods for operands with more
than 217 bits [52]. We implement an NTT-based Schönhage–
Strassen multiplication algorithm for million-bit integers using
NTT/INTT implementations proposed by Navas et al. [53].
Due to resource limitations, most of the FPGA-based imple-
mentations of NTT use prime numbers less than or equal to
64 bits since the prime number determines the multiplication
size [17], [54]. In order to reduce the number of NTT iterations
and improve the overall latency, we select a large prime in
the NTT computation. Our resulting million-bit multiplication
implementation includes 512 and 1024-bit multipliers.

We explore million-bit multiplication implementations in
Table VII. The default HLS implementation fails placement
due to resource overutilization. K(n,m) represents Karatsuba
decomposition applied to 512-bit multiplication producing n-
bit leaf multiplications and 1024-bit multiplication producing
m-bit leaf multiplications. The maximum number of instances
of the million-bit design that can fit U250 is maximum 3
using Karatsuba decompositions. IMpress succeeds in fitting
4 instances of the design by constraining DSP utilization of
512-bit multiplication to 307, 1024-bit multiplication to 1228,
and minimizing their LUT utilization. U250 consists of 4 SLR
regions. In an FHE application, let us assume that we are

TABLE VII: Resource utilization, latency, and frequency of million-
bit HE benchmark when synthesized using the default HLS imple-
mentation, Karatsuba decompositions, and IMpress.

Method DSP (DSP%) LUT (LUT%) Latency
(cycles)

Freq
(MHz)

HLS Default NA NA NA NA
K(64,128) 4,681 (38.09) 274,224 (15.87) 12,452,003 221
K(64,64) 4,274 (34.78) 304,140 (17.60) 13,222,078 219
K(32,64) 3,950 (32.15) 339,999 (19.68) 13,123,773 212
K(32,32) 3,227 (26.26) 408,301 (23.63) 12,927,158 239
K(16,32) 2,984 (24.28) 439,775 (25.45) 13,222,078 239
K(16,16) 2,431 (19.78) 511,916 (29.62) 13,811,922 229
IMpress 3,071 (24.99) 381,697 (22.09) 12,746,927 225

TABLE VIII: Resource utilization, latency, and frequency of RSA-
512 when synthesized using the Vitis library implementations, Karat-
suba decompositions, and IMpress.

Method DSP (DSP%) LUT (LUT%) Latency
(cycles)

Freq
(MHz)

Vitis-1 0 (0) 17,055 (0.99) 39,565 238
Vitis-2 4,530 (36.87) 41,882 (2.42) 3,638 18

1-level Karat 3,424 (27.86) 131,086 (7.59) 4,646 229
2-level Karat 3,072 (25.00) 156,339 (9.05) 5,192 223
3-level Karat 2,352 (19.14) 223,964 (12.96) 4,772 241
4-level Karat 1,782 (14.50) 291,507 (16.87) 5,150 236

IMpress 2,030 (16.52) 247,706 (14.33) 5,024 231

constrained to fit one million-bit multiplication design in one
SLR. As Table VII suggests, IMpress can fit the logic into
one SLR, while none of the Karatsuba decompositions can
achieve this. The latency and frequency results of IMpress are
comparable to Karatsuba results.

2) RSA: Modular exponentiation is computationally com-
plex and heavily used in public-key cryptography, e.g., RSA
and Diffie-Hellman key exchange. Its efficiency depends heav-
ily on the modular multiplication unit. Montgomery modular
multiplication is a fast method and it mainly contains three
integer multiplications. Modulus size determines the complex-
ity of the multiplication. We use the HLS implementation of
RSA-512 provided by the AMD Xilinx Vitis HLS Security
Library [55]. Their implementation is indicated as Vitis-1 in
Table VIII. We obtain Vitis-2 by modifying their Montgomery
unit to leverage 256-bit integer multiplications for improved
latency.

Vitis-1 gives a considerably high latency compared to other
implementations. Vitis-2 gives a very low frequency (18 MHz)
due to its 256-bit multiplication unit. The maximum number
of instances of RSA-512 that can fit U250 is maximum 5
using Karatsuba decompositions. IMpress succeeds in fitting
6 instances of RSA-512 by constraining DSP utilization of
256-bit multiplication to 93 and minimizing LUTs. In the
classical approaches, DSPs are the limiting factors at the early
decomposition levels and LUTs become the limiting factor as
the level is increased. IMpress, on the other hand, effectively
balances the utilization of both resources, leading to a more
efficient use of the FPGA device. The latency and frequency
results of IMpress are comparable to Karatsuba results.

VI. RELATED WORK

Optimization of large integer multiplication is an impor-
tant problem in FPGA-based acceleration of cryptographic
applications. Rafferty et al. lay out a comprehensive study
of classical methods in [12]. Langhammer et al. propose
an efficient multiplication architecture leveraging Karatsuba
decomposition along with allocation and scheduling strategies
for improved throughput [11]. Chow et al. leverage Karatsuba
in their large modular multiplier [1]. Vitali et al. use Karatsuba
and Comba methods in their HLS-based multiplier generator
for better throughput [13]. Kumm et al. propose Karatsuba
tiling for rectangular multipliers [14]. Another line of research
on multiplication decomposition studies the relation between
the specification of the multiplication operation and its phys-
ical implementation on FPGA devices using hardened DSP
blocks or soft logic [56], [57], [58], [59], [60], [61].

Equality saturation is a very promising approach for avoid-
ing the phase ordering problem [18]. An efficient open-source
equality saturation tool called egg is recently developed [19].
We are seeing an increasing use of it across various domains
including linear algebra [21], tensor computations [23], [62],
digital signal processing [22], floating-point arithmetic [63],
3D CAD [20], and fabrication [24]. Some of them use
ILP to extract expressions for a single objective [21], [23].
Heuristics for multi-objective extraction are developed using
strategies such as iterative pruning and genetic algorithms [24],
[63]. There are other rewriting systems that bring together
architectural and algorithmic optimizations for digital signal
processing [64] or focus on graph substitutions in DNNs [65].
There are also tools for rewriting floating-point arithmetic
expressions for FPGA HLS using formal approaches and
targeting the area-accuracy trade-off [66].

VII. CONCLUSION

Ever increasing security requirements and complexity of
cryptographic algorithms necessitate synthesizing large integer
multiplication units on limited FPGA resources. We propose
IMpress, an integer multiplication expression rewriting frame-
work, which produces multiplication expressions with optimal
hardware cost. Through equality saturation and multi-objective
extraction, IMpress generates expressions that balance the uti-
lization of different resource types and helps resolve placement
issues. Furthermore, while other decomposition techniques
such as Karatsuba may not efficiently avoid timing-degrading
operators due to the LUT overhead of performing another level
of decomposition, IMpress can handle timing in a resource-
efficient manner.

ACKNOWLEDGMENT

This work was supported in part by NSF Awards #1723715,
#2019306, #2008144, #2019336, and research gifts from AMD
Xilinx and Intel. We thank Professor Pavel Panchekha, Pro-
fessor Zachary Tatlock, Max Willsey, Alexa VanHattum, and
Oliver Flatt for the insightful discussions, Max Willsey also for
his assistance with the egg tool, and anonymous reviewers for
their valuable feedback on earlier versions of this manuscript.

REFERENCES

[1] G. C. Chow, K. Eguro, W. Luk, and P. Leong, “A Karatsuba-Based
Montgomery Multiplier,” Int’l Conf. on Field Programmable Logic and
Applications (FPL), 2010.

[2] D. D. Chen, G. X. Yao, R. C. Cheung, D. Pao, and C. K. Koç, “Pa-
rameter Space for the Architecture of FFT-Based Montgomery Modular
Multiplication,” IEEE Trans. on Computers (TC), 2015.

[3] B. H. K. Chen, P. Y. S. Cheung, P. Y. K. Cheung, and Y.-K. Kwok, “An
Efficient Architecture for Zero Overhead Data En-/Decryption using Re-
configurable Cryptographic Engine,” Int’l Conf. on Field Programmable
Technology (FPT), 2015.

[4] M. A. Mehrabi, C. Doche, and A. Jolfaei, “Elliptic Curve Cryptography
Point Multiplication Core for Hardware Security Module,” IEEE Trans.
on Computers (TC), 2020.

[5] M. M. Islam, M. S. Hossain, M. Shahjalal, M. K. Hasan, and Y. M.
Jang, “Area-Time Efficient Hardware Implementation of Modular Mul-
tiplication for Elliptic Curve Cryptography,” IEEE Access, 2020.

[6] S. Gener, P. Newton, D. Tan, S. Richelson, G. Lemieux, and P. Brisk,
“An FPGA-based Programmable Vector Engine for Fast Fully Homo-
morphic Encryption over the Torus,” Secure and Private Systems for
Machine Learning (SPSL), 2021.

[7] T. Ye, S. R. Kuppannagari, R. Kannan, and V. K. Prasanna, “Perfor-
mance Modeling and FPGA Acceleration of Homomorphic Encrypted
Convolution,” Int’l Conf. on Field Programmable Logic and Applications
(FPL), 2021.

[8] V. Migliore, C. Seguin, M. M. Real, V. Lapotre, A. Tisserand,
C. Fontaine, G. Gogniat, and R. Tessier, “A High-Speed Accelerator
for Homomorphic Encryption Using the Karatsuba Algorithm,” ACM
Trans. on Embedded Computing Systems (TECS), 2017.

[9] A. C. Mert, E. Öztürk, and E. Savaş, “Design and Implementation of
Encryption/Decryption Architectures for BFV Homomorphic Encryption
Scheme,” IEEE Trans. on Very Large-Scale Integration Systems (TVLSI),
2020.

[10] S. Kim, K. Lee, W. Cho, Y. Nam, J. H. Cheon, and R. A. Ruten-
bar, “Hardware Architecture of a Number Theoretic Transform for a
Bootstrappable RNS-based Homomorphic Encryption Scheme,” Symp.
on Field Programmable Custom Computing Machines (FCCM), 2020.

[11] M. Langhammer and B. Pasca, “Folded Integer Multiplication for
FPGAs,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2021.

[12] C. Rafferty, M. O’Neill, and N. Hanley, “Evaluation of Large Integer
Multiplication Methods on Hardware,” IEEE Trans. on Computers (TC),
2017.

[13] E. Vitali, D. Gadioli, F. Ferrandi, and G. Palermo, “Parametric Through-
put Oriented Large Integer Multipliers for High Level Synthesis,”
Design, Automation, and Test in Europe (DATE), 2021.

[14] M. Kumm, O. Gustafsson, F. de Dinechin, J. Kappauf, and P. Zipf,
“Karatsuba with Rectangular Multipliers for FPGAs,” Symp. on Com-
puter Arithmetic (ARITH), 2018.

[15] I. San and N. At, “On Increasing the Computational Efficiency of Long
Integer Multiplication on FPGA,” Int’l Conf. on Trust, Security and
Privacy in Computing and Communications (TrustCom), 2012.

[16] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Hanley, “Opti-
mised Multiplication Architectures for Accelerating Fully Homomorphic
Encryption,” IEEE Trans. on Computers (TC), 2016.

[17] X. Feng and S. Li, “Design of an Area-Efficient Million-Bit Integer
Multiplier Using Double Modulus NTT,” IEEE Trans. on Very Large-
Scale Integration Systems (TVLSI), 2017.

[18] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality Saturation: A
New Approach to Optimization,” Symp. on Principles of Programming
Languages (POPL), 2009.

[19] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha,
“Egg: Fast and Extensible Equality Saturation,” Symp. on Principles of
Programming Languages (POPL), 2021.

[20] C. Nandi, M. Willsey, A. Anderson, J. R. Wilcox, E. Darulova, D. Gross-
man, and Z. Tatlock, “Synthesizing Structured CAD Models with Equal-
ity Saturation and Inverse Transformations,” Conf. on Programming
Language Design and Implementation (PLDI), 2020.

[21] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu, “SPORES:
Sum-Product Optimization via Relational Equality Saturation for Large
Scale Linear Algebra,” Proc. VLDB Endow., 2020.

[22] A. VanHattum, R. Nigam, V. T. Lee, J. Bornholt, and A. Sampson,
“Vectorization for Digital Signal Processors via Equality Saturation,”

Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2021.

[23] Y. Yang, P. Phothilimthana, Y. Wang, M. Willsey, S. Roy, and J. Pienaar,
“Equality Saturation for Tensor Graph Superoptimization,” Proceedings
of Machine Learning and Systems, 2021.

[24] H. Zhao, M. Willsey, A. Zhu, C. Nandi, Z. Tatlock, J. Solomon,
and A. Schulz, “Co-Optimization of Design and Fabrication Plans for
Carpentry,” arXiv preprint arXiv:2107.12265, 2021.

[25] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-Level Synthesis for FPGAs: From Prototyping to Deployment,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2011.

[26] R. Nane, V.-M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A Survey
and Evaluation of FPGA High-Level Synthesis Tools,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2016.

[27] Y.-H. Lai, E. Ustun, S. Xiang, Z. Fang, H. Rong, and Z. Zhang,
“Programming and Synthesis for Software-Defined FPGA Acceleration:
Status and Future Prospects,” ACM Trans. on Reconfigurable Technology
and Systems (TRETS), 2021.

[28] R. P. Brent and P. Zimmermann, “Modern Computer Arithmetic,”
Cambridge University Press, 2010.

[29] A. A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers
on Automata,” Soviet Physics Doklady, 1963.

[30] M. Scott, “Missing a Trick: Karatsuba Variations,” Cryptography and
Communications, 2018.

[31] S. A. Cook and S. O. Aanderaa, “On the Minimum Computation Time of
Functions,” Transactions of the American Mathematical Society, 1969.

[32] P. G. Comba, “Exponentiation Cryptosystems on the IBM PC,” IBM
Systems Journal, 1990.

[33] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine
Calculation of Complex Fourier Series,” Mathematics of Computation,
1965.

[34] N. Dershowitz, “A Taste of Rewrite Systems,” Functional Programming,
Concurrency, Simulation and Automated Reasoning, 1993.

[35] D. Detlefs, G. Nelson, and J. B. Saxe, “Simplify: A Theorem Prover for
Program Checking,” Journal of the ACM (JACM), 2005.

[36] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” Int’l Conf.
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), 2008.

[37] R. Joshi, G. Nelson, and K. Randall, “Denali: A Goal-Directed Super-
optimizer,” ACM SIGPLAN Notices, 2002.

[38] M. Stepp, R. Tate, and S. Lerner, “Equality-Based Translation Validator
for LLVM,” Int’l Conf. on Computer Aided Verification (CAV), 2011.

[39] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Auto-
matically Improving Accuracy for Floating Point Expressions,” ACM
SIGPLAN Notices, 2015.

[40] C. G. Nelson, “Techniques for Program Verification,” Stanford Univer-
sity, 1980.

[41] R. Nieuwenhuis and A. Oliveras, “Proof-Producing Congruence Clo-
sure,” Int’l Conf. on Rewriting Techniques and Applications (RTA), 2005.

[42] Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer, “On a Bicriterion
Formulation of the Problems of Integrated System Identification and
System Optimization,” IEEE Trans. on Systems, Man, and Cybernetics
(TSMC), 1971.

[43] L. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2004.

[44] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” Python in Science
Conference (SciPy), 2008.

[45] C. Gentry, “A Fully Homomorphic Encryption Scheme,” Stanford Uni-
versity, 2009.

[46] ——, “Computing Arbitrary Functions of Encrypted Data,” Communi-
cations of the ACM, 2010.

[47] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors over Rings,” Journal of the ACM (JACM), 2013.

[48] Z. Brakerski and V. Vaikuntanathan, “Fully Homomorphic Encryption
from Ring-LWE and Security for Key Dependent Messages,” Cryptology
Conf. (CRYPTO), 2011.

[49] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
Homomorphic Encryption over the Integers,” Int’l Conf. on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), 2010.

[50] C. Gentry and S. Halevi, “Implementing Gentry’s Fully-Homomorphic
Encryption Scheme,” Int’l Conf. on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2011.

[51] H. V. L. Pereira, “Bootstrapping Fully Homomorphic Encryption over
the Integers in Less than One Second.” Int’l Conf. on Public-Key
Cryptography, 2020.

[52] L. C. C. Garcıa, “Can Schönhage Multiplication Speed Up the RSA
Decryption or Encryption?” Technische Universität Darmstadt, 2007.

[53] J. A. Navas, B. Dutertre, and I. A. Mason, “Verification of an Optimized
NTT Algorithm,” Working Conf. on Verified Software: Theories, Tools,
and Experiments (VSTTE), 2020.

[54] Y. Doröz, E. Öztürk, and B. Sunar, “Accelerating Fully Homomorphic
Encryption in Hardware,” IEEE Trans. on Computers (TC), 2014.

[55] Xilinx, “Vitis Security Library,” https://xilinx.github.io/Vitis Libraries/
security/2020.2/ index.html, 2020.

[56] S. Srinath and K. Compton, “Automatic Generation of High-
Performance Multipliers for FPGAs with Asymmetric Multiplier
Blocks,” Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2010.

[57] H. Parandeh-Afshar and P. Ienne, “Measuring and Reducing the Perfor-
mance Gap between Embedded and Soft Multipliers on FPGAs,” Int’l
Conf. on Field Programmable Logic and Applications (FPL), 2011.

[58] D. B. Roy, D. Mukhopadhyay, M. Izumi, and J. Takahashi, “Tile Before
Multiplication: An Efficient Strategy to Optimize DSP Multiplier for
Accelerating Prime Field ECC for NIST Curves,” Design Automation
Conf. (DAC), 2014.

[59] B. Ronak and S. A. Fahmy, “Efficient Mapping of Mathematical

Expressions into DSP Blocks,” Int’l Conf. on Field Programmable Logic
and Applications (FPL), 2014.

[60] M. Kumm, J. Kappauf, M. Istoan, and P. Zipf, “Resource Optimal
Design of Large Multipliers for FPGAs,” Symp. on Computer Arithmetic
(ARITH), 2017.

[61] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate Operation
Delay Prediction for FPGA HLS Using Graph Neural Networks,” Int’l
Conf. on Computer-Aided Design (ICCAD), 2020.

[62] G. H. Smith, A. Liu, S. Lyubomirsky, S. Davidson, J. McMahan,
M. Taylor, L. Ceze, and Z. Tatlock, “Pure Tensor Program Rewriting
via Access Patterns (Representation Pearl),” Int.’l Symp. on Machine
Programming, 2021.

[63] B. Saiki, O. Flatt, C. Nandi, P. Panchekha, and Z. Tatlock, “Combin-
ing Precision Tuning and Rewriting,” Symp. on Computer Arithmetic
(ARITH), 2021.

[64] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “SPIRAL:
Extreme Performance Portability,” Proceedings of the IEEE, 2018.

[65] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“TASO: Optimizing Deep Learning Computation with Automatic Gen-
eration of Graph Substitutions,” Symp. on Operating Systems Principles
(SOSP), 2019.

[66] X. Gao, S. Bayliss, and G. A. Constantinides, “SOAP: Structural
Optimization of Arithmetic Expressions for High-Level Synthesis,” Int’l
Conf. on Field Programmable Technology (FPT), 2013.

https://xilinx.github.io/Vitis_Libraries/security/2020.2/index.html
https://xilinx.github.io/Vitis_Libraries/security/2020.2/index.html

	Introduction
	Preliminaries
	Large Integer Multiplication
	Equality Saturation

	Motivational Example
	Approach
	Equality Saturation for Large Integer Multiplication
	Optimal Expression Extraction
	Constrained Single-Objective Optimization
	Multi-Objective Optimization

	Code Generation and Synthesizing the Application

	Evaluation
	Scalability Analysis
	ILP vs Existing Heuristic for a Single Objective
	Expression Rewriting with Multiple Objectives
	Cost Model Accuracy
	Cryptographic Applications
	Integer-Based HE
	RSA

	Related Work
	Conclusion
	References

