
Exact Memory- and Communication-aware
Scheduling of DNNs on Pipelined Edge TPUs

Jiaqi Yin1, Zhiru Zhang2, Cunxi Yu1
1University of Utah
2Cornell University

{jiaqi.yin@utah.edu, cunxi.yu@utah.edu}

Abstract—Deep neural networks (DNNs) represent the state-of-
the-art in many applications but have substantial computational
and memory requirements, which greatly limit their training and
deployment in real-world systems. In particular, the deployment
challenges further increase on edge systems with much more
restricted resource-constrained (e.g., computation and memory
bounded), which recently attracted significant interest in many
application scenarios. Such devices like Edge TPUs usually provide
limited on-chip storage and memory bandwidth, where the
heuristic-based ahead-of-time compilation techniques are highly
limited in optimizing the inference performance due to the lacks of
performance guarantees. This work proposes a novel exact pipeline
scheduling framework that enables model parameter caching, data
dependency, and device-to-device communication-aware multi-
objective optimizations. The framework is powered by novel
versatile SDC+ILP formulations supporting both propositional
logic and non-equality constraints. The experimental results
demonstrate that the proposed scheduling frameworks consistently
outperform commercial Edge TPU Compiler with up to more than
4× speedups on eleven ImageNet models in physical pipelined
Edge TPU setups. In addition, we have demonstrated consistent
real-world energy efficiency improvements measured with high
precision power meter. Finally, the proposed framework has also
demonstrated the capability in multi-model co-deployment on
pipeline Edge TPU system, which is not supported by Edge TPU
Compiler.

I. INTRODUCTION

Targeted specialization of functionality in hardware has become
arguably the best means for enabling improved compute per-
formance and energy efficiency. However, as the complexity of
modern hardware systems explodes, fast and effective hardware
deployments of high computation density algorithms are more
and more challenging. Deep neural networks (DNNs) represent
the state-of-the-art in many applications but introduce substan-
tial computational and memory requirements, which greatly
limit their training and deployment in resource-constrained (e.g.,
compute and memory resources) environments. To efficiently
deploy DNNs on the hardware platforms, it usually requires
designated compilers that take in front-end DNN models and
map them to the platforms. As the size of DNN models
rises, it becomes more challenging to deploy the models onto
edge devices with small on-chip buffer sizes using static and
heuristic-based execution scheduling methods, specifically for
edge computing ecosystems, such as Google Edge TPU ([6],
[41]), Microsoft Azure ML ([4]), etc.

To efficiently utilize those hardware platforms, scheduling
algorithms implemented in deep learning (DL) compilers are

critical in deploying such hyper-dimensional computationally-
intensive workloads, which is a classical NP-hard combinatorial
optimization problem ([24], [27]). Mostly, vendor-specific
libraries such as Nvidia cuBLAS, TVM, and TF-Lite (
[1], [8], [25], [36]), rely on hand-crafted domain-specific
heuristics to optimize the executions, which trades the execution
performance for scheduling runtime. An alternative solution is
the tensor compiler, which expresses the processing of tensors
in its own intermediate representations (IRs) [1], [8], [32], [35].
These compilers separate the computation definition (i.e., what
to compute) and the scheduling (i.e., how to compute) to focus
on the scheduling part for performance optimization, including
loop transformation, tiling, thread binding, etc. While recently
there has been significant progress in advancing DL compilers,
the challenges for large-scale DL executions are still rising up.

One of the critical limitations is that executions of DL
algorithms optimized by heuristic-based compilation lack
quality guarantees, which can cause significant performance
degradation. As state-of-the-art neural networks are growing
wider and deeper, the number of tensor operations growing
from millions to trillions ([14], [34]). Meanwhile, the resource
constraints become stricter, especially on the edge devices such
as mobile devices and customized edge platforms for smart
homes. Such devices usually provide limited on-chip storage
and memory bandwidth, which makes it more challenging to
fit the growing models without losing too much performance.
Failures of executing deep learning algorithms on edges devices
without exact guarantees can cause significant performance
degradation, which can be safety-critical, e.g., autonomous
driving [17] and Face-ID on mobile devices [18]. Thus, we
argue there is a great need to develop scalable and versatile
exact compilation methods for heavily customized edge devices.
Most edge-device scheduling methods such as Google Edge
TPU compiler [6], [41] and dynamic scheduler [3] utilize
iterative metaheuristics [31], which either optimize schedule
efficiently without performance guarantees or require significant
long optimization runtime. On the other hand, there have been
many learning-based scheduling approaches [7], [30], [37],
which lack guarantees in determinism and solution quality and
require expensive training and data collection. This work aims
to develop a deterministic, optimal, and scalable constraint
solving-based scheduling method for edge DNN deployment.

This work aims to develop a novel exact memory caching
aware and communicate aware pipeline scheduling framework,

targeting a multi-stage pipeline Edge TPUs system for DNNs
inference acceleration. Specifically, the contributions can be
summarized as follows:

• First comprehensive experimental studies on multi-stage
Edge TPU pipelining are provided in Sections II-B and
III, which post the limitations of heuristic-based pipeline
scheduling and domain-specific knowledge for exact Edge
TPU optimizations.

• We propose a novel exact pipeline scheduling frame-
work that enables exact model parameter caching, data
dependency, and device-to-device communication cost
optimization, supported by novel versatile SDC+ILP
formulations supporting both propositional logic and non-
equality constraints (Section IV).

• With the novel SDC+ILP formulations, we introduce a
novel incremental ILP solving strategy for multi-objective
exact optimization, which balances both quality-of-results
of scheduling and solving runtime.

• Our approaches are evaluated with 2,3,4,5, and 6-stage
physical pipeline Edge TPU setups, using eleven popular
ImageNet models, with commercial Edge TPU Compiler
as the baseline. The proposed approaches demonstrate
consistent inference runtime speedups across all pipeline
setups, with up to 4× against Edge TPU Compiler.

• In addition, comparisons and evaluations on real-world
power consumption and energy efficiency (Joules/fps) are
provided to demonstrate the advantages of the proposed
scheduling approaches.

• Finally, we demonstrate a case study of the first multi-
model co-compilation on pipeline Edge TPUs, which is
not supported by Edge TPU Compiler.

Experimental methodology and artifact availability – The
proposed system has been integrated with IBM CPLEX, Google
Edge TPU and Tensorflow-Lite, to provide complete solution
of DNN scheduling on Edge TPU and offers extensibility on
other edge platforms using SDC+ILP scheduling. Experimental
results are conducted on real-world Edge TPU system obtained
from Coral.ai and power measurements are performed with
high precision USB power meter. The software system will be
released in public repository after acceptance.

II. BACKGROUND

A. Edge TPU and Software Stack

Following the success of TPUs ([1], [23]), Google extends
the specialized systolic array architecture to deep learning
acceleration at edge, namely Edge TPUs. The main components
in Edge TPUs include a 2D array of processing elements
(PE), where each PE contains a single or multiple cores. One
critical feature that has high impacts on performance and energy
efficiency in edge accelerators is the memory design. In Edge
TPUs, each PE has a memory shared across all the compute
cores on a single Edge TPU device, which is mainly used to
store model activations, intermediate computing results, and
outputs. The cores within each PE feature an on-chip cache
memory that is mainly used for storing model parameters.

When the model parameters cannot be fully fit in the cache,
parameters are partially loaded in the off-chip DRAM. Similar
to many accelerator designs, the cache and DRAM utilization
distribution will be critical for achieving high throughput of
such highly parallel computing architecture. Currently, Edge
TPU platforms only support TensorFlow Lite (TFLite [28])
compiled and quantized models trained with TensorFlow as
input to the Edge TPU software stack. Specifically, the Edge
TPU runtime library is developed to support TFLite APIs,
where the TFLite models are compiled ahead-of-time before
deployment using Edge TPU Compiler. This compiler maps
the operators in the computational graphs of the DNNs models
to customized operations supported on the Edge TPU hardware
and optimizes the execution of all the operations.

B. Edge TPU Pipelining

Due to the aforementioned memory design characteristics,
Edge TPU system offers a pipeline compilation option to
accelerate the runtime of deploying large models in Edge TPU
ecosystem. While the model parameters cannot be fully fit into
the Edge TPU cache and the overall throughput needs to be
improved, Edge TPU compiler offers pipelined compilation
that segments the model into separate computational subgraphs.
At the deployment stage, each subgraph runs in a pipeline
on separate Edge TPUs. For example, as shown in Figure 1,
we have built a 6-stage pipeline Edge TPU system, where
the one or multiple models can be deployed after partitioning
into six computational subgraphs, where each subgraph will
be deployed to devices T0 to T5. For example, we perform
a simple multi-stage pipeline evaluation shown in Table I,
which shows that inference speed can be greatly improved by
pipelining the models on multiple Edge TPU devices. This is
because if model parameters cannot be fit to on-chip cache,
the overall throughput becomes a bottleneck.

Edge TPU:t0

Edge TPU:t1

Edge TPU:t2

Edge TPU:t3
Host

Edge TPU:t4

Edge TPU:t3

Edge TPU:t5

R
es

N
et

10
1/

15
1

Fig. 1: Illustration of our multi-stage (up to 6) pipeline Edge
TPUs that is connected to CPU host via USB 3.0 Hub. The USB
3.0 Hub is equipped with external power supply to maintain
stable 5.2 V power supply cross all Edge TPU devices.

TABLE I: Execution time (millisecond) of ResNet inference
on single Edge TPU and pipeline Edge TPUs.

Stages 1 2 3 4 5
ResNet101 80.7 68.6 48.6 32.8 14.2
ResNet152 115.1 104.5 84.5 66.8 50.4

While Table I shows that the performance can be improved
by pipelining, there are several limitations in the Edge TPU
compiler. First, Edge TPU Compiler pipeline compilation
strategy uses a heuristic that tries to evenly distribute the model
parameters loading across all the Edge TPU devices, without
considering the optimality and global runtime impact. Second,
Edge TPU compiler does not consider the communication
cost from earlier stage to later stage in the pipeline Edge TPU
system. Note that the communication that mostly communicates
the intermediate results to next stage is conducted on device-to-
device communication via USB 3.0 connection, which could
become runtime bottleneck when all devices load subgraphs
using cache only. Moreover, to maintain the correctness of
execution, the pipeline scheduling of the DNNs computational
graph has to follow topological order to avoid dependency
violation. However, there exists a large number of different
topological orders for a given computational graph but result in
very different performance on the physical Edge TPU system.

C. Resource-constrained scheduling

Resource-constrained scheduling (RCS) has been the subject
of extensive study, resulting in a line of heuristics, includ-
ing Hu’s Algorithm, List Scheduling, and Force-Directed
Scheduling, to solve the problem efficiently ([33], [40]).
Iterative metaheuristics, such as simulated annealing, ant colony,
and dynamic programming optimizations, have also been
demonstrated as viable options [31]. For example, [3] proposed
a dynamic programming based adaptive budgeting scheduling
technique, which can either optimize schedule efficiently
without performance guarantees or requires significant long
optimization runtime. On the other hand, while resource-
constrained scheduling maps to a constraint satisfaction prob-
lem consisting of logical connectives of linear constraints,
it can also be solved with modern SMT solvers, which
integrate specialized solvers with propositional satisfiability
search techniques to achieve conflict-driven learning [5], [12],
[13], [15], [29], [39].

System of difference constraints (SDC) is a system of in-
equality constraints in the integer difference form xi−xj ≤ bij ,
where bij is an integer, and xi and xj are variables. The system
is feasible if there exists a solution that satisfies all inequalities
in the system. Because of the restrictive form of the constraints,
SDC can be solved efficiently. For SDC-based scheduling [10],
[11], [26], [43], [44], a schedule variable si is declared for
each operation i in the DFG to denote the clock cycle at which
operation i is scheduled. All SDC scheduling constraints are
then expressed in the integer difference form so that the system
consists of a totally unimodular constraint matrix over which
an optimal integer solution can be guaranteed in polynomial
time, which significantly improves the classic integer linear
programming (ILP) scheduling ([16], [31]). However, SDC-
based formulations have not yet been applied to neural network
domain scheduling, and yet have been extended to support a
hybrid form of propositional and non-equality constraints.

III. PIPELINED EDGE TPU RUNTIME

A. DNNs Computational Graph Scheduling

Input
0

BN
1024

Conv1
262144

Padding
0

Add
0

Conv2
589824

Pool
0

Output
0

[2,2,1024]

[2,2,512]

[2,2,256]

[2,2,256]

[2,2,1024]

[2,2,1024]

[2,2,1024]

[2,2,1024]

Edge TPU:t0

Edge TPU:t1

Host

Input
0

BN
1024

Conv1
262144

Padding
0

Add
0

Conv2
589824

Pool
0

Output
0

[2,2,1024]

[2,2,512]

[2,2,256][2,2,256]

[2,2,1024]

[2,2,1024]

U
SB
3.0

U
SB
3.0

Fig. 2: Two scheduling examples of a simple DNNs computa-
tion graph that differ only in the Conv2 node allocation – Left
scheduling achieves better runtime, since it optimizes memory
utilization and communication cost.

Scheduling of DNNs computational graph is a critical step
to achieve desired runtime performance for DNNs computing
platforms [2], [8], [22], [23], [36]. Specifically, the optimization
objectives of scheduling computational graphs can be defined
as follows: Given: (1) A DAG G(V,E) where V represents
the set of operations in the DNNs computational graphs,
and E represents the set of edges; (2) A set of scheduling
constraints, which may include dependency constraints (E),
resource constraints, execution time, memory allocations, etc.
Objective: Construct an exact optimal schedule S = s0,s1,...sn,
n ≤ |V |, where n represents the number of scheduling stages.
The operation set in the computational graph V will be allocated
to S that satisfies all scheduling constraints (E). For example,
in a two-stage pipelined Edge TPU system in Figure 2, resulted
schedule assigns computation node NInput, NBN, NConv1, and
NPool to s0 (Edge TPU:0), NPadding, NAdd and NOutput to s1
(Edge TPU:1), etc.

Figure 2 illustrates two different scheduling solutions on a
DNNs synthetic computational graph, in which the number
of parameters is shown in the vertices. While both schedules
are valid, they differ in the scheduling assignment of node
NConv1. Considering a two-stage pipelining system, the time
to execute the given computational graph (T) is equal to sum
of execution time among all stages (T = T0 + T1). Because
T0 and T1 are dominated by the off-chip memory usage, the
scheduling solution that has the lower off-chip memory usage
will likely execute faster. Specifically, the left scheduling in
Figure 2 has lower memory upper bound (589824). In addition,
the communication cost, i.e., tensors communicated between
the neighbor stages, is another critical factor for the runtime. In
Figure 2, the left scheduling offers smaller communication cost

([2,2,512]+[2,2,256]+[2,2,1024]) than the right one ([2,2,512],
[2,2,1024] and [2,2,1024]). Therefore the left scheduling has
better memory usage and smaller communication cost, which
leads to better runtime. We extend the analysis on an ImageNet
ResNet50 model in the following section to motivate the studies
in exact scheudling of DNNs computation graph, particularly
on Edge TPUs.

B. Motivating Example – ResNet50 on Pipelined Edge TPUs

In this section, a comprehensive analysis of the performance
variations with different scheduling of pipeline execution is
provided in order to learn domain-specific knowledge for
producing optimal schedules. Specifically, we aim to analyze
the runtime differences in three aspects: 1) Parameters caching
– One critical optimization on edge hardware is optimizing
the model parameter caching, as on-chip memory size is very
limited. For inference on multi-stage pipeline Edge TPUs, the
execution efficiency could benefit significantly from minimizing
per device parameters loading in DRAM. 2) Data dependency
– Give a DNNs computational graph, there could exist many
execution schedules that evenly split out the cache/DRAM
usage, but result in very different performance. This is mostly
caused by data dependency. Note that the pipeline Edge TPU
system involves device-to-device communication, such that
the effects of data dependency could be more significant. 3)
Device-to-device-communication – Note that device-to-device-
communication is performed off-chip (e.g., via USB 3.0
I/O), which is much slower than any on-chip interface. A
motivating example to demonstrate the importance of these
three optimization aspects in the pipeline Edge TPU system is
provided below.

TABLE II: Motivating example of pipelined Edge TPU
execution scheduling using ResNet50v2 model with nine
different scheduling choices w.r.t partial computation graph
shown in Figure 3. Note that execution time is measured as
average per frame execution runtime with 5,000 inference
iterations. And we pick pipeline option IV as baseline to
measure the speedup.

Choice Execution
Time(ms)

Stage-0 (MiB) Stage-1 (MiB)
DRAM Cache DRAM Cache

I 12.6 (+18.7%) 1.85 6.72 0 5.81
II 13.3 (+21.1%) 1.82 6.72 3.13e-2 5.81
III 11.9 (+11.8%) 1.56 6.72 3.13e-2 6.07
IV 10.5 (Best) 0.993 6.72 3.13e-2 6.64
V 11.5 (+8.7%) 0.738 6.72 3.13e-2 6.89
VI 11.5 (+8.7%) 0.738 6.72 3.13e-2 6.89
VII 15.5 (+32.3%) 1.82 6.72 3.13e-2 5.81
VIII 13.3 (+21.1%) 0.738 6.72 3.13e-2 6.89
IX 10.9 (+3.7%) 0.707 6.72 6.25e-2 6.89

a) Motivating example: Here, we provide an experimental
example to demonstrate the impacts of different pipeline
execution schedules, with specific cases corresponding to the
aforementioned three items. Specifically, we build a CPU
central-hosted pipeline Edge TPU system to execute the
pipeline models and evaluate the performance (see Figure

Fig. 3: Partial structure of ResNet50v2 used in the moti-
vating example with detailed partitions for first two stages
in 3-stage pipeline Edge TPUs. Partial computational graph
of ResNet50V2 with nine different pipeline options shown in
dash lines I – IX, which is used as partition point for stage-0
and stage-1.

1), and this case study is conducted on deploying an ImageNet
ResNet50v2 model in a 3-stage execution. To be specific,
this study includes nine different manually generated schedul-
ing choices on partitioning the first and second stages of
ResNet50v2 model, shown in Figure 3 and Table II. As shown
in Figure 3, the choices evaluated here are located in one of
the residual blocks. Specifically, the number of parameters for
each operation and the output volume size of each operation
are annotated in Figure 3. Table II records the core memory
(Cache) usage and DRAM usage after deploying different
pipelined models, as well as the physical computing execution
runtime. The main observations can be summarized as follows:

• Parameter caching has great impacts on execution
runtime in ahead-of-time compilation. Specifically, the
execution speed is determined by the cache and DRAM
usage. For example, pipeline choice IV offers the best
execution time for 3-stage pipeline ResNet50v2, where it
maximizes the cache usage and simultaneously minimizes
the DRAM usage per device. Note that the third stage
(stage-2) excluded in Table II are partitioned identically
cross all the choices. Other pipeline choices such as I, II,
III, and VII need to have similar DRAM parameter loading
on stage-1 but require more than 1 MiB DRAM usage on
stage-0, which significantly degrades the performance by
∼14%. However, we can see that choices IV (10.5 ms)
and VIII (13.3 ms) have very similar parameter caching
statistics but result in ∼12% difference in execution time,
which leads to our next domain-specific observation.

• Data dependency has to be considered in compiler
optimization, particularly the partition points and their
structure between subgraphs. The partition structure
needs to be specially taken care considering operation
fanouts, i.e., the output of one operation is used as the
inputs of multiple nodes. For example, pipeline choice
VIII put the child nodes of Add into different stages
and need 13.3 ms to inference. However, we can see a
speedup if we schedule the child nodes into the same
stage. Pipeline choices IX, VI schedule the child nodes of
ADD into the same stage and respectively have a speedup
of ∼1.22× (10.9 ms) and ∼1.16× (11.5 ms).

• Minimizing communication cost leads to faster pipeline
inference. For example, given pipeline choices IV and
V, DRAM usage in IV is 0.993 MiB, which is more
∼25% more than DRAM usage of V 0.738 MiB. However,
we can see that IV performs 8.70% faster than V, due
to a much smaller communication cost. Specifically, in
the pipeline choice V, the tensors passed from ReLU
operation to Convolution are in shape of (14,14,1024),
while in IV the tensor size is (14,14,256), i.e., 4× smaller
in communicating the intermediate output from the first
device to the second device (Figure 3).

IV. APPROACH

In this section, we present the formulations of exact schedul-
ing for optimizing the pipeline schedule on Edge TPU system,
with DNNs computational graphs as inputs. Specifically, we

propose a novel SDC+ILP-based formulation that combines
both propositional logic and non-equality constraints for
optimal Edge TPU scheduling in n-stage pipeline settings
(n ≥ 2), which enable multi-objective scheduling that leverage
domain-specific knowledge summarized in Section III. Noted
that all constraints are automatically generated for any given
computational graph in our framework.

Input
0

BatchNorm
1024

Convolution1
262144

Zeropadding
0

Add
0

Convolution2
589824

Maxpooling
0

Output
0

[2,2,1024]

[2,2,1024]

[2,2,512]

[2,2,256]

[2,2,256] [2,2,1024]

Fig. 4: Synthetic DNNs computational graph representation
for formulation illustrations.

A. Multi-objective Optimization Formulations

In the modern deep learning frameworks, machine learning
algorithms are represented as computational graphs, where
each graph is a directed graph G(V,E) where V , E represent
operations and the dataflow, respectively. Given the computation
graph, the edge device scheduling maps the operators into
different devices. Specifically, the SDC-ILP based scheduling
builds the formulation and different sets of constraints to
optimize the objectives. The constraint includes dependency
constraint, pipeline constraints, memory caching constraint, etc.

As demonstrated in the ResNet50v2 motivating example,
we can see that multi-objective optimization is necessary to
generate the optimal schedules to cover all performance factors
influencing edge device performance. However, directly solving
a global multi-objective SDC+ILP formulation can be very
challenging due to the nature computational complexity. In
particularly, while elaborating all domain-specific knowledge in
optimizations with a large computational graph, the formulation
size and complexity can explode very fast. Therefore, we
integrate incremental multi-objective solving in our scheduling

framework to rank the solving priorities of the three optimiza-
tion objectives.

1) Dependency and Pipeline Constraint: The dependence
constraints formulated in this section guarantee the execution
correctness of the given computational graph, which has the
highest priority among all constraints. Specifically, for each
edge ei,j ∈ E that directs vi to vj , dependency formulation is
required to make sure the optimization is aware of vj can be
executed if vi is complete. Let si be the pipeline stage for node
vi, and sj be the pipeline stage for node vj , the dependency
encoded by edge ei,j can be formulated as

si − sj ≤ 0 (1)

where si and sj are the stages of nodes which should be an
integer variable. In addition, given an n-stage pipeline Edge
TPU system, the scheduling space si of each operation vi are
limited to one of the n stages. Note that we assume that all
the operations in the computational graphs are executed only
once in this work. Thus, let ski be the scheduling variable of
node vi scheduled at k stage (k < n), Equation 2 combined
with Equation 1 completes the dependency constraints for a
given pipeline system.

n-1∑
k=0

sk
i = 1 (2)

Example 1 We illustrate the dependency constraints using
a synthetic computational graph shown in Figure 4, which
consists of six operations, i.e., BatchNorm (BN), two Con-
volution operations (Conv1 and Conv2), Maxpooling (Pool),
Zeropadding (Pad), and Addition (Add).

sBN − sIn ≥ 0
∧ sPool − sIn ≥ 0
∧ sConv2 − sBN ≥ 0
∧ sConv1 − sBN ≥ 0
...
∧ sAdd − sPool ≥ 0
∧ sOut − sAdd ≥ 0

(3)

As shown in Figure 4, there exist execution dependencies from
BN to Conv1 and Conv2, such that the formulation imposes
constraint sBN −sConv1 ≤ 0∧sBN −sConv1 ≤ 0 to guarantee the
BN is complete before initializing Conv1 and Conv2. Similarly,
Equation 3 encodes all execution dependency constraints in
the graph. Besides, we introduce sk

i as a binary variable to
denote if operation vi is scheduled in stage k, which is used
for encoding the pipeline constraints. In this example, Equation
4 is sufficient to complete the dependency constraints along
with Equation 3.

∧ sk=0
BN + sk=1

BN + sk=2
BN = 1

∧ sk=0
Conv1 + sk=1

Conv1 + sk=2
Conv1 = 1

...

∧ sk=0
Add + sk=1

Add + sk=1
Add = 1

(4)

2) Parameter Caching Optimization: To optimize the param-
eter caching, a set of formulations that encode the per pipeline
stage parameter memory consumption is needed. Specifically,

we introduce additional constraints on top of dependency
constraints discussed in Section IV-A1 to exhaustively encode
the per stage memory consumption w.r.t all scheduling search
space. Let mk be the memory consumption of pipeline stage
k, mk is the sum of parameter memory caching cost Pk of all
operations to be scheduled in stage k. To exhaustively cover
all scheduling options, we use an explicit formulation for mk

mk =
∑
∀v∈V

pv · skv (5)

where pv is the memory consumption estimated based on
the number of parameters in operation v. Notes that skv is a
binary variable and only one of the variables for k ∈ [0, n− 1]
evaluates to True.

Example 2 In this example, we first illustrate the memory
consumption modeling in ILP formulation. Assume the target
system is 3-stage pipeline Edge TPUs, there is total of three
scheduling choices for each operation in Figure 4, e.g., s0BN, s1BN,
s2BN encoding that BN node can be theoretically scheduled at
either of the three stages. Similarly, in the explicit formulation,
other nodes can be theoretically scheduled at any stage. Thus,
according to Equation 5, the memory consumption per pipeline
stage can be formulated as

V = {BN, Pool, Conv1, Conv2, Pad, Pool, Add}
∧ m0 =

∑
∀v∈V pv · s0v

∧ m1 =
∑

∀v∈V pv · s1v
∧ m2 =

∑
∀v∈V pv · s2v

∧ Equations (4) and (5)

(6)

where pv is denoted in Figure 4. These ensure the ILP formu-
lations precisely encode the per-stage memory consumption
over the whole scheduling space. For example, we can verify
the memory consumption using the trivial partitions shown in
Figure 4 (dash lines). For m0, the only schedule variable is
evaluated to True is s0BN, such that m0 = 1024. Note that s1BN
and s2BN will be automatically determined to False according
to Equation 4. Similarly, m1 includes only s1Conv1, s1Conv1, and
s1Pool, where the rest of the variables are evaluated to False.

min mlimit
∧ m0 ≤ mlimit
∧ m1 ≤ mlimit
∧ m2 ≤ mlimit
∧ Equations (4), (5), (7)

(7)

The per-stage memory consumption modeling enables flexible
optimization objective definitions in the entire formulation.
Specifically, we are interested in two exact parameter caching
optimization objectives: 1) minimize per device parameter
caching, and 2) maximize cache utilization as well as minimize
DRAM usage. For objective 1), as shown in Equation 7, we
introduce a new memory bound variable mlimit, which is the
upper bound of the per stage memory consumption. While
giving an optimization objective that minimizes mlimit, the
solver is able to find the minimum per stage memory cost
scheduling solution that satisfies all other constraints.

Enabling memory optimization objective is more complex
as a conditional greater-equal ILP formulation that encodes

the DRAM utilization. For example, in Edge TPU devices, the
on-chip memory is 8MiB, and per stage memory usage of a
3-stage pipeline model is 6 MiB, 8.5 MiB, and 9 MiB. Then,
the DRAM usage of the first stage is 0 since it is smaller than
the cache size. For the second and third stages, while the size
is greater than 8, the DRAM usage will be 0.5 and 1 MiB.
Thus, the DRAM utilization at stage k is max(0,mk −mcache),
which can be formulated using a novel ILP greater-equal
formulation ILP≥(), shown in Equation 8, where mk denotes
the memory consumption at stage k, mcache is cache memory
size, and ILP≥(mk,mcache) is a binary variable to represent if
mk ≥ mcache. To express ILP≥(mk,mcache) in ILP formulation,
ILP≥(mk,mcache) = ILP≥(mk,mcache, k, U), where k and U
are constants. Specifically, we want to 1) evaluate ILP≥ to
True if mk − mcache ≥ k, and 2) evaluate ILP≥ to False
if mk − mcache < k. U is a user-defined upper bound that
U >> mk,mcache. Therefore, we can simply set k = 0 and U
to be a very large integer.

mDRAMk =
∑

k(mk −mcache) · ILP≥(mk,mcache)
∧ mk − U · ILP≥(mk,mcache) ≤ mcache − 1
∧ mk − U · ILP≥(mk,mcache) ≥ mcache − U

(8)

3) Communication-aware optimization: Similarly, ILP for-
mulations that explicitly encode the device-to-device com-
munication cost are needed to enable communication-aware
optimization. Thus, such formulations involve determination of
whether and where there exists device-to-device communication.
For each edge ei,j from node vi to vj , if the stage of vi and
vj are not the same, i.e., si ̸= sj , the intermediate tensor
will introduce a communication cost. Let comk,k+1 express
the communication cost from stage k to stage k + 1, and te
represents the volume to communicate on edge e from device
k to device k + 1.

comk,k+1 =
∑
e

te · αe (9)

where αe is a binary variable to denote if the edge e introduces
a communication overhead to stage k + 1. Specifically, αei,j

is True if si ̸= sj ∧ sj = k+1. Otherwise, αei,j evaluates to
False. As we can see, αe is the logical AND of ILP≥(sj, si+1)
and ILP=(sj, k + 1). ILP≥(sj, si+1) is True if sj is greater or
equal to si+1 and ILP=(sj, k) is True if sj is equal to k + 1.

αe = ILP≥(si+1, sj) ∧ ILP=(sj, k + 1) (10)

To complete the formulations for αe, it needs ILP formula-
tions for propositional logic, i.e., ILP≥ (discussed in Equation
8), ILP= and ILP∧. Thus, here we introduce logical AND and
Equal in the format of ILP formulations.

Given y = x1 ∧ x2, where x1, x2, y are binary, we
have Equation 11, where y = ILP∧(x1, x2). y ≥ x1 + x2 − 1

y ≤ x1

y ≤ x2

(11)

Given y = ILP=(x, k, U), with integer x, binary variable y,
constant k and upper bound U , and we define y = 1 if x =

k and y = 0 if x ̸= k. Let −U < x < U,−U < k <
U , we introduce a new binary variable σ to express y =
ILP=(x, k, U), where σ is the inversion of y.

x+ y + (U + 1)σ ≥ 1 + k
−x+ y − (U + 1)σ ≥ −U − k
x+ Uy − (U + 1)σ ≤ U + k
−x+ Uy − (U + 1)σ ≤ U − k

(12)

Example 3 We use the example in Figure 4 to demonstrate
the formalism of communication cost for the edge Convolution2
to Add in stage 2. We use come to represent the communication
cost of this edge from Stage 1 to Stage 2, where come =
te · αeConv1,Add . The complete formulation is shown in Equation
13, where k = 2, and e represents eConv1,Add. αe ≥ ILP=(e) + ILP≥(e)− 1

αe ≤ ILP=(e)
αe ≤ ILP≥(e)
sAdd + ILP=(e) + (U + 1)σ ≥ 1 + 2
−sAdd + ILP=(e)− (U + 1)σ ≥ −U − 2
sAdd + U · ILP=(e)− (U + 1)σ ≤ U + 2
−sAdd + U · ILP=(e)− (U + 1)σ ≤ U − 2{
sAdd − sConv2 − U · ILP≥(e) ≤ 1− 1
sAdd − sConv2 − U · ILP≥(e) ≥ 1− U

(13)

4) Data Dependency Optimization: Finally, we introduce
the formulation to encode the last domain-specific observation
about data dependency in pipeline Edge TPU scheduling. To be
specific, we observe that the execution time can be significantly
improved if operations that share the same input execute in the
same stage, which improves the efficiency of dataflow execution.
In other words, for a given operation with out degree ≥ 2, the
child nodes need to be scheduled at the same stage.

Example 4 For the example in Figure 4, to add this domain-
knowledge, we add extra constraints shown in Equation 14
that restrict (Conv2, Conv1) and (BN, Pool) to be in the same
stage.

sConv2 − sConv1 = 0
sBN − sPool = 0

(14)

B. Multi-objective Scheduling

With the formulations discussed previously, multiple critical
pipeline cost metrics can be used as optimization objectives.
According to the motivating example shown in Section III, we
will focus on optimizing parameter caching as well as communi-
cation cost, which forms a multi-objective optimization problem
in ILP solving. Specifically, we formulate three optimization
cost functions in the final optimization SDC+ILP formulations:

1 maximum per stage memory consumption for loading
parameters (cache and DRAM), 2 peak memory footprint
per stage, and 3 maximum communication cost in n-stage
pipelining. Note that while solving the proposed SDC+ILP
formulations using ILP solver, the optimal solution (if exists) is
produced w.r.t a single minimization or maximization objective.
However, it is possible to apply an incremental ILP solving,
which optimizes the solution iteratively w.r.t to a sequence of
optimization objectives, where the later iteration further refines
the solution space on top of previously obtained solution space.

More details about our experimental settings for multi-objective
optimization are provided in Section V.

C. System Integration

Quantized DNNs Models

Computation Graph
Extraction

Formulation Generation
SDC_ILP(G(V,E), obj, devices)

Solution Extraction
scheduleG ↤ sol{G(V,E),devices}

Edge TPU Compiler
(w/o default pipeline schedule)

User-defined
Objectives

G(V, E)

Deployment

IBM CLPEX Solving

Model Quantization

Quantized memory
consumption, etc.

Fig. 5: Overview of end-to-end SDC+ILP scheduling frame-
work for pipelined Edge TPUs system.

We build a framework that integrates the SDC+ILP-based
scheduler with TFLite and Edge TPU Compiler to complete the
design flow of Edge TPU pipelining (Figure 5). Specifically,
the inputs of our framework include a single DNNs model or
multiple models for co-deployment, and the number of pipeline
stages n in the Edge TPU system. The output of our framework
includes n partitioned subgraphs to be deployed on each of
the n Edge TPU devices. The flow of our framework includes
the following steps:

• Graph construction – First, our framework extracts the
computation graphs G of the input model(s). If there are
more than one input models, our framework constructs a
new DAG by introducing a shared sink and source node,
which connects the inputs and outputs nodes of all models,
respectively. The node and edge attributes are filled up
simultaneously.

• Formulation generator – Second, multiple sets of for-
mulations are automatically generated with G as inputs
w.r.t modeling described in Section IV. Based on the
optimization user-inputs, the optimization objectives in
the formulation will be adjusted with specific priorities,
which enable incremental ILP solving.

• Solving and solution extraction – Our framework will
deploy IBM ILOG CPLEX to solve the formulations
generated in previous step and extract the solutions with a
list of tensor matching points w.r.t to the frozen graph of
the original model(s). Next, using TFLite TOCO converter,
our framework produces n subgraphs that will be deployed
to specific Edge TPU devices w.r.t the solution.

• Deployment – Finally, to map the operations in the sub-
graphs into Edge TPU specific operations, our framework
deploys Edge TPU Complier to deploy the subgraphs

to Edge TPUs, without any further optimizations from
Edge TPU compiler. Since all Edge TPU models are
quantized in INT8 format before deploying to the devices,
our scheduling framework takes the INT8 quantization
into account while generating the communication and
memory caching constrains.

V. RESULTS

In this section, we provide comprehensive evaluations and
discussions of the proposed pipeline optimization approaches.
Specifically, we compare the optimization performance of
three multi-objective optimization approaches enabled by our
framework against Coral Edge TPU Compiler (baseline).
The experimental results are conducted on eleven popular
ImageNet image classification neural network models, using
the pipeline Edge TPU system shown in Figure 1. The results
are organized as follows: (1) We demonstrate the execution
runtime improvements over Edge TPU compiler with 2, 3, 4, 5,
and 6-stage pipelining setups, using 11 ImageNet models shown
in Table III. (2) We provide a detailed memory usage among
11 models to explain the runtime speedups obtained with the
proposed scheduling approach. (3) We physically evaluate
the power and energy efficiency improvements over Edge
TPU compiler. (4) Furthermore, we analyze the complexity
and scalability of the proposed approaches. (5) Lastly, we
demonstrate the application of the proposed framework on
multi-model co-deployment on pipeline Edge TPU system.

A. Experimental setups on Edge TPU runtime

The experiments in the rest of this section are conducted on
physical computing platforms built with Google Edge TPUs.
Specifically, we build a central-hosted pipelined Edge TPU
system to execute DNNs inference with configurations as 3-
stage, 4-stage, 5-stage, and 6-stage pipelining and evaluate
the real-world computation performance improvements for
DNNs inference execution. While TPUs can only execute
INT8 quantized neural networks, we perform INT8 quantization
using TF-Lite with Tensorflow embedded pre-trained models.
These models are the inputs to the Edge TPU compiler and
our linear formulation scheduling framework. The inference
is conducted on Intel 10700K and formulation solving are
conducted with Intel Xeon Gold 6230 x20 CPUs. The power
and energy measurements are conducted on a precise USB
power meter.

B. Inference Performance Evaluation

Our comparison baseline is the commercial version of
Edge TPU compiler1. The runtime comparisons are evaluated
using eleven popular ImageNet classification models (Table
III), including ResNet50, Xception, ResNet101, ResNet152,
ResNet50v2, ResNet101v2, DenseNet121, DenseNet169,
DenseNet201, ResNet152v2, InceptionResNetv2. To minimize
the impacts of runtime variations in executing DNNs on Edge
TPU system, the results included in Figure 6 are the mean
runtime of 10 rounds of 1,000 ImageNet inference, using

1https://coral.ai/docs/EdgeTPU/compiler/

https://coral.ai/docs/Edge TPU/compiler/

TABLE III: Statistics of DNNs computational graphs used for evaluating inference runtime on pipelined Edge TPUs Systems

ResNet50
[19]

Xception
[9]

ResNet101
[19]

ResNet152
[19]

ResNet50v2
[19]

ResNet101v2
[42]

|V| 177 134 347 517 192 379
deg(V) 2 2 2 2 2 2

Depth 168 125 338 508 184 371
DenseNet121

[21]
DenseNet169

[21]
DenseNet201

[21]
ResNet152v2

[20]
InceptionResNetv2

[38]
|V| 429 597 709 566 782

deg(V) 2 2 2 2 4
Depth 428 596 708 558 571

the eleven models. Although we select ImageNet models
to illustrate the effectiveness of our work, our scheduling
framework can be generalized to other neural network models.

Specifically, we evaluate three multi-objective optimization
formulations: 1) 1 → 3 – first minimizes per stage param-
eter caching mlimit then minimizes per stage communication
cost; 2) 1 → 2 → 3 – minimizes per stage total
parameter caching, DRAM usage, and communication cost
iteratively; 3) 2 → 1 → 3 – minimizes per stage
DRAM usage, total parameter caching, and communication
cost iteratively. The results are summarized in Figure 6,
where the horizontal axis represents the runtime performance.
Due to the actual runtime speedups varies a lot between
different models, we present the normalized results w.r.t
runtime obtained with Edge TPU Compiler. The multi-objective
optimization SDC+ILP formulations are solved using IBM
ILOG CPLEX by assigning the priority of solving objectives
in the orders discussed above. Compared to the baseline Edge
TPU Compiler, the three multi-objective optimizations provide
consistent speedups for all pipelining setups shown in Figure 6.
Specifically, the proposed approach offers up to 1.17×, 1.15×,
1.29×, 1.15×, and 4.07× speedups on 2 – 6-stage pipeline
Edge TPU, respectively. Moreover, we have observed that
the proposed approaches offer significantly more speedups
on 6-stage pipeline Edge TPU system. For example, for
ResNet101v2 and ResNet152, all three optimization approaches
offer more than 4× speedups at inference compared to Edge
TPU Compiler.

We provide analysis on experimental phenomena as follow-
ing. Firstly, the results prove that execution runtime is highly
dependent on both total per stage memory consumption (1)
and DRAM utilization (2), but 1 is more dominated.
This has been further confirmed by optimizing the pipeline
scheduling w.r.t 2 → 3 objectives, which mostly perform
worse than Edge TPU compiler and the other three strategies.
Thus, we exclude 2 → 3 results from the comparison.
In addition, combining objectives 1 and 2 also benefits
the solving runtime, which greatly reduces the solution space
in the formulation. For example, it is almost infeasible (in
runtime) to optimize the schedule by using having 2 or 3

only as a single optimization objective. Moreover, we find that
the performance can be further optimized by optimizing 1

and 2 in a sequence, however, not the other way around.
For example, while deploying ResNet101v2 in 5-stage system,
the performance offered by 1 → 3 can be significantly
improved by adding 2 as the second-priority objective. While

mostly 2 → 1 → 3 strategy performs well, we observe
that the results are less consistent. For example, in 4-stage and
5-stage systems, it performs the worst overall on ResNet-based
models. We have included examples of differences in memory
caching between the three multi-objective solutions and Edge
TPU compiler in Figure 7.

Finally, pipeline setting dominates in runtime as the number
of stages increases. When deployed to more stages, more DNNs
can be implemented on Edge TPUs. For example, after the
pipeline stage is set over 6, all sub-models can be compiled
on Edge TPUs in cache-only execution by either of the three
strategies or the default compiler. However, while deploying
on more pipeline stages, the device-to-device communication
impacts become more dominant in runtime performance, since
it communicates via a relatively slow I/O interface (USB 3.0)
compared to on-chip communication. Note that Edge TPU
compiler is not communication-aware. Therefore, we have
observed more significant speedups on 6-stage pipeline system.

C. Memory Allocation Evaluation

To understand the runtime improvements offered by the
proposed scheduling framework, we provide a detailed analysis
of memory allocation. For edge computing, on-chip memory
size is generally limited. Reloading the parameters from off-
chip memory is time-consuming for large inference scenarios.
Caching partial or full data on on-chip memory will reduce
unnecessary data transfer. Specifically, it will lead to better
execution performance and energy efficiency. Thus off-chip
memory usage dominates the execution performance. Therefore,
we comprehensively compare the memory distribution between
Edge TPU compiler and the proposed scheduler (Figure 7).
The vertical-axis is the memory usage by Megabytes (MB) that
represents off-chip and cache usage. Specifically, if its value
is ≥ 0, it refers to no off-chip memory usage (all allocated
to cache); otherwise, it means the cache is fully loaded and
DRAM usage is reflected in negative value (e.g., -2 MB means
8 MB cache load and 2 MB off-chip DRAM load). Noted that
the Edge TPU on-chip cache size is 8 MB.

There are two key conclusions that can be summarized in
Figure 7: (1) The proposed three exact methods (1 →

2 → 3 , 2 → 1 → 3 , 1 → 3) all produce
scheduling solutions that reduce and balance the off-
chip memory usage than Edge TPU compiler. We can see
that these three solving strategies have the similar memory
distribution and all have lower memory upper bound than
Edge TPU compiler, which is the main reason for the runtime

0.85 0.88 0.91 0.94 0.97 1.00
2-stage

Xcep
tio

nResN
et5

0ResN
et1

52ResN
et1

01ResN
et5

0v
2

Den
seN

et2
01

ResN
et1

52
v2

Den
seN

et1
69

Den
seN

et1
21

ResN
et1

01
v2

Inc
ep

tio
nR

esN
etv

2

0.85 0.88 0.91 0.94 0.97 1.00
3-stage

0.75 0.80 0.85 0.90 0.95 1.00
4-stage

0.750.800.850.900.951.00
5-stage

0.100.250.400.550.700.851.00
6-stage

Edge TPU

Fig. 6: Edge TPUs inference runtime comparisons between the proposed approaches and Edge TPU compiler (baseline scale=1).

Edge TPU

6.75

7.00

7.25

7.50

M
em

or
y

Ut
iliz

at
io

n
(M

B)

Stage 0
Stage 1

Stage 2
Stage 3

(a) ResNet152 (4-stage)

Edge TPU
2

4

6

8

10

M
em

or
y

Ut
iliz

at
io

n
(M

B)

Stage 0
Stage 1
Stage 2

Stage 3
Stage 4

(b) ResNet152 (5-stage)

Edge TPU
0

2

4

6

M
em

or
y

Ut
iliz

at
io

n
(M

B)

Stage 0
Stage 1
Stage 2

Stage 3
Stage 4
Stage 5

(c) ResNet152 (6-stage)

Edge TPU
2

0

2

4

M
em

or
y

Ut
iliz

at
io

n
(M

B)

Stage 0
Stage 1

Stage 2
Stage 3

(d) DenseNet201 (4-stage)

Edge TPU
4

2

0

2

4

M
em

or
y

Ut
iliz

at
io

n
(M

B)

Stage 0
Stage 1
Stage 2

Stage 3
Stage 4

(e) DenseNet201 (5-stage)

Edge TPU
4

2

0

2

4

M
em

or
y

Ut
iliz

at
io

n
(M

B)

Stage 0
Stage 1
Stage 2

Stage 3
Stage 4
Stage 5

(f) DenseNet201 (6-stage)

Fig. 7: Cache/DRAM usage comparisons between four proposed strategies and Edge TPU compiler uisng ResNet152 and DenseNet201,
where vertical-axis represents mcache −msi . Therefore, positive values represent parameter caches fully on on-chip cache, and negative
values represent the DRAM usage.

0.75 1.00 1.25
2-stageSta

tic
 Po

werResN
et5

0
ResN

et5
0v

2ResN
et1

01
ResN

et1
01

v2ResN
et1

52
ResN

et1
52

v2
Den

seN
et1

21
Den

seN
et1

69
Den

seN
et2

01

Inc
ep

tio
nR

esN
etv

2Xcep
tio

n

1.0 1.5
3-stage

1.5 2.0 2.5
4-stage

Edge TPU

(a) Power in Watt

0.00 0.05 0.10
2-stage

ResN
et5

0ResN
et5

0v
2ResN

et1
01ResN

et1
01

v2ResN
et1

52ResN
et1

52
v2

Den
seN

et1
21

Den
seN

et1
69

Den
seN

et2
01

Inc
ep

tio
nR

esN
etv

2Xcep
tio

n

0.0 0.1
3-stage

0.0 0.1
4-stage

Edge TPU

(b) Energy efficiency in Joule/(frame/second)

Fig. 8: Power and energy cost comparison between our methods (strategy 1 → 2 → 3) and Edge TPU compiler.

differences. For example, ResNet152 scheduling generated by
the SDC+ILP scheduler has much lower memory upper bound
than Edge TPU scheduling in 5-stage and 6-stage pipelining.
Hence, compared with Edge TPU compiler, we have observed
a runtime speedup of 1.06× and 4.07× (1 → 2 → 3),
respectively. On the other hand, DenseNet201 scheduling
generated with SDC+ILP has similar memory distribution but
improved slightly on the memory upper bound. Compared to
Edge TPU compiler, the speedup reduced to 1.12 × in 6-stage
pipelining.(2) Evenly distributed memory and lower upper
bound memory usage across all pipeline Edge TPU stages
lead to better runtime performance. For example, the Edge
TPU compiler clearly shows unbalanced and higher upper
bound memory usage, in which the runtime speedups confirm
the domain-specific knowledge, e.g., 5-stage ResNet152 and
DenseNet201.

D. Power and Energy Evaluation

First, we can see that ILP-based scheduling offers better
computation resource utilization due to the exact memory
allocation and communication optimization, which is reflected
in slightly dynamic power (Figure 8a). Note that edge devices
aim to offer high energy efficiency in executing DNNs models,
which is discussed in Figure 8b. We can see that our proposed
scheduling approach consistently improve the efficiency across
all the models tested. For example, in 4-stage ResNet101v2
pipelining, the energy efficiency is improved over Edge TPU

Fig. 9: Power measurement setups with an illustrating example
of a 4-stage pipelined Edge TPU system.

compiler, which reduces the cost from 7.92×10−2 J/fps to
7.04×10−2 J/fps (11.4% reduction).

E. Optimization Complexity and Scalability

To demonstrate the scalability of the proposed approaches,
we measure the complexity of solving the exact pipeline
scheduling formulation using two different neural architectures
(ResNet and DenseNet) with various graph sizes and pipeline
stages. While exact optimization schemes mostly require
long runtime optimization, the results shown in Figure 10
demonstrate the CPLEX solving runtime is reasonable for

2 3 4 5 6
Pipeline stages

0

10

20

30
CP

LE
X

ru
nt

im
e

(s
) ResNet50

ResNet101
ResNet152

(a) ImageNet ResNet models

2 3 4 5 6
Pipeline stages

0

15

30

45

CP
LE

X
ru

nt
im

e
(s

) DenseNet121
DenseNet169
DenseNet201

(b) ImageNet DenseNet models

Fig. 10: Runtime of the proposed multi-objective scheduling solved using CPLEX.

large DNNs models, and most importantly, is almost linear
complexity to the graph size and the number of pipeline stages.

Specifically, Figure 10 includes the CPLEX solving time
of the three multi-objective optimization formulations using
ResNet50/101/152 and DenseNet121/169/201 models, where
the y-axis represents the CPLEX runtime and the x-axis
represents the target number of pipeline stages in the Edge TPU
system. There are three important takeaways: (1) the pipeline
schedules of all six models can be optimized within 60 seconds
under all three multi-objective optimization constraints, which
is efficient for static ahead-of-time compilation. Particularly,
the input graph like DenseNet201 includes more than 709
nodes and 708 depth is much more complex than traditional
datapath scheduling but still can be solved very effectively. It is
believed that the iterative multi-objective ILP solving strategy
benefits the solution space pruning, which improves the solving
runtime significantly. In addition, in most industrial applications,
the deployment process is a one-shot effort. Therefore, for
the context of deploying real-world models on edge devices,
we believe that the solving runtime in about 60 seconds is
acceptable in generating “exact-optimal” solutions. (2) runtime
increases almost linearly w.r.t to the number of pipeline stages,
regardless of the size of the DNNs computational graphs; (3)
given similarly neural architectures, runtime increases also in
linear scale w.r.t to the size of the graphs. As shown in Table III,
|V | of ResNet50/101/152 equal to 177, 357, 517, respectively,
in which the solving runtime increases linearly. Besides, in
Figure 10(b), we can see that the runtime for 6-stage decreases
slightly compared to 5-stage optimization. This is because
the optimization solution space is relaxed while more cache
memory is available for optimizing objectives 1 and 2 .

F. Enabling Multi-model Co-deployment

The proposed SDC+ILP scheduling framework enables multi-
model co-deployment for real-time inference on Edge TPUs.
Multi-model co-deployment has a wide range of applications
in real-world scenarios, where a single computing platform
is usually supporting multiple tasks. For example, Edge TPU
compiler supports co-compilation to speed up performance
when continuously run multiple models on the same Edge
TPUs. However, the Edge TPU compiler does not support
co-deployment in pipeline settings. According to Section IV,

the proposed versatile formulation is directly applicable to co-
deployment, where we build a multi-model DAG by merging
the two inputs as a source node and two outputs as a sink
model. Figure 11 includes the mean runtime of ResNet101 and
DenseNet169 co-deployment with 10 rounds of inference tests.
The results demonstrate the multi-model runtime performance
can be linear improved as we increased the stages from two
to five, which is the ideal case in pipelining on Edge TPU
devices.

2 3 4 5
Pipeline stages

50

70

90
Ex

ec
ut

io
n

Ru
nt

im
e

(s
)

Fig. 11: Execution runtime of co-deployment of RestNet101
and DenseNet169 inference using the proposed framework.

VI. CONCLUSION

We propose a novel exact scheduling framework that enables
versatile multi-objective optimization, including parameter
caching, data dependency, and device-to-device communication,
in the domain of neural networks. With the proposed novel
versatile SDC+ILP formulations that support both propositional
logic and non-equality constraints, the proposed framework
is capable to perform exact scheduling for a wide range of
customized edge devices. Our approaches are evaluated with
2,3,4,5, and 6-stage physical pipeline Edge TPU setups, using
eleven popular ImageNet models, with commercial Edge TPU
Compiler as the baseline. The proposed approaches demonstrate
consistent inference runtime speedups across all pipeline setups,
with up to 4× against Edge TPU Compiler, as well as real-
world power consumption and energy efficiency (Joules/fps)
improvements.

Acknowledgement This work is funded by National Science
Foundation (NSF) under NSF-2007832, NSF-2008144, NSF-
2019306, and NSF-2019336.

REFERENCES

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale Machine
Learning. Symp. on Operating System Design and Implementation (OSDI),
pages 265–283, 2016.

[2] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao
Li, Michaël Gharbi, Benoit Steiner, Steven Johnson, Kayvon Fatahalian,
Frédo Durand, et al. Learning to optimize halide with tree search and
random programs. ACM Transactions on Graphics (TOG), 38(4):1–12,
2019.

[3] Byung Hoon Ahn, Jinwon Lee, Jamie Menjay Lin, Hsin-Pai Cheng, Jilei
Hou, and Hadi Esmaeilzadeh. Ordering chaos: Memory-aware scheduling
of irregularly wired neural networks for edge devices. arXiv preprint
arXiv:2003.02369, 2020.

[4] Jeff Barnes. Azure machine learning. Microsoft Azure Essentials. 1st ed,
Microsoft, 2015.

[5] C. Barrett, C. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. CVC4. Int’l Conf. on Computer Aided
Verification (CAV), 2011.

[6] Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami,
Geraldo F Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu. Mitigating
edge machine learning inference bottlenecks: An empirical study on
accelerating google edge models. arXiv preprint arXiv:2103.00768,
2021.

[7] Hongzheng Chen and Minghua Shen. A deep-reinforcement-learning-
based scheduler for fpga hls. In 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE,
2019.

[8] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Q.
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning. Symp. on Operating
System Design and Implementation (OSDI), pages 578–594, 2018.

[9] François Chollet. Xception: Deep learning with depthwise separable
convolutions. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1251–1258, 2017.

[10] Jason Cong and Zhiru Zhang. An Efficient and Versatile Scheduling
Algorithm Based on SDC Formulation. Design Automation Conf. (DAC),
2006.

[11] Steve Dai, Gai Liu, and Zhiru Zhang. A Scalable Approach to
Exact Resource-constrained Scheduling based on a Joint SDC and SAT
Formulation. Int’l Symp. on Field-Programmable Gate Arrays (FPGA),
2018.

[12] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver.
Tools and Algorithms for the Construction and Analysis of Systems, 2008.

[13] Leonardo De Moura and Nikolaj Bjørner. Satisfiability Modulo Theories:
Introduction and Applications. Communications of the ACM, 2011.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. arXiv preprint arXiv:1810.04805, 2018.

[15] Bruno Dutertre. Yices 2.2. Int’l Conf. on Computer Aided Verification
(CAV), 2014.

[16] Christodoulos A Floudas and Xiaoxia Lin. Mixed integer linear pro-
gramming in process scheduling: Modeling, algorithms, and applications.
Annals of Operations Research, 139(1):131–162, 2005.

[17] Thomas James Fox, Eric R Kern, and Michael Scott Rollins. Autonomous
Fail-over to Hot-spare Processor using SMI, 2007. US Patent 7,251,746.

[18] Rida M Hamza, Michael E Bazakos, and Murray J Cooper. Face
Identification Verification using 3 Dimensional Modeling. 2008. US
Patent 7,421,097.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity
mappings in deep residual networks. In European conference on computer
vision, pages 630–645. Springer, 2016.

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition,
pages 4700–4708, 2017.

[22] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model
parallelism for deep neural networks. Proceedings of Machine Learning
and Systems, 1:1–13, 2019.

[23] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav
Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden,
Al Borchers, et al. In-datacenter Performance Analysis of a Tensor
Processing Unit. Int’l Symp. on Computer Architecture (ISCA), pages
1–12, 2017.

[24] Krzysztof Kuchcinski. Constraints-driven scheduling and resource
assignment. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 8(3):355–383, 2003.

[25] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou,
Jason Cong, and Zhiru Zhang. HeteroCL: A Multi-Paradigm Program-
ming Infrastructure for Software-Defined Reconfigurable Computing.
Int’l Symp. on Field-Programmable Gate Arrays (FPGA), 2019.

[26] Charles E Leiserson and James B Saxe. Retiming synchronous circuitry.
Algorithmica, 6(1):5–35, 1991.

[27] Christophe Lenté, Mathieu Liedloff, Ameur Soukhal, and Vincent t’Kindt.
Exponential algorithms for scheduling problems. 2014.

[28] TensorFlow Lite. Ml for mobile and edge devices, 2020.
[29] Sharad Malik and Lintao Zhang. Boolean Satisfiability from Theoretical

Hardness to Practical Success. Communications of the ACM, 2009.
[30] Hongzi Mao, Malte Schwarzkopf, Shaileshh Bojja Venkatakrishnan, Zili

Meng, and Mohammad Alizadeh. Learning scheduling algorithms for
data processing clusters. In Proceedings of the ACM Special Interest
Group on Data Communication, pages 270–288. 2019.

[31] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. PyTorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems
(NIPS), pages 8024–8035, 2019.

[33] Pierre G Paulin and John P Knight. Force-directed scheduling for the
behavioral synthesis of asics. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 8(6):661–679, 1989.

[34] Alexander Ratner, Dan Alistarh, Gustavo Alonso, Peter Bailis, Sarah
Bird, Nicholas Carlini, Bryan Catanzaro, Eric Chung, Bill Dally, Jeff
Dean, et al. SysML: The New Frontier of Machine Learning Systems.
arXiv preprint arXiv:1904.03257, 2019.

[35] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer
Deng, Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele,
Roman Levenstein, et al. Glow: Graph Lowering Compiler Techniques
for Neural Networks. arXiv preprint arXiv:1805.00907, 2018.

[36] Jason Sanders and Edward Kandrot. CUDA by example: an introduction
to general-purpose GPU programming. Addison-Wesley Professional,
2010.

[37] Shuran Sheng, Peng Chen, Zhimin Chen, Lenan Wu, and Yuxuan Yao.
Deep reinforcement learning-based task scheduling in iot edge computing.
Sensors, 21(5):1666, 2021.

[38] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A
Alemi. Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference on artificial
intelligence, 2017.

[39] Chao Wang, Franjo Ivančić, Malay Ganai, and Aarti Gupta. Deciding
Separation Logic Formulae by SAT and Incremental Negative Cycle
Elimination. Logic for Programming, Artificial Intelligence, and
Reasoning, 2005.

[40] Tao Yang and Apostolos Gerasoulis. List scheduling with and without
communication delays. Parallel Computing, 19(12):1321–1344, 1993.

[41] Amir Yazdanbakhsh, Kiran Seshadri, Berkin Akin, James Laudon, and
Ravi Narayanaswami. An evaluation of edge tpu accelerators for
convolutional neural networks. arXiv preprint arXiv:2102.10423, 2021.

[42] Bo Yu, Lu Yang, and Fang Chen. Semantic segmentation for high spatial
resolution remote sensing images based on convolution neural network
and pyramid pooling module. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 11(9):3252–3261, 2018.

[43] Cunxi Yu, Chau-Chin Huang, Gi-Joon Nam, Mihir Choudhury, Victor N
Kravets, Andrew Sullivan, Maciej Ciesielski, and Giovanni De Micheli.
End-to-end industrial study of retiming. In 2018 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pages 203–208. IEEE, 2018.

[44] Zhiru Zhang and Bin Liu. SDC-Based Modulo Scheduling for Pipeline
Synthesis. Int’l Conf. on Computer-Aided Design (ICCAD), 2013.

	Introduction
	Background
	Edge TPU and Software Stack
	Edge TPU Pipelining
	Resource-constrained scheduling

	Pipelined Edge TPU Runtime
	DNNs Computational Graph Scheduling
	Motivating Example – ResNet50 on Pipelined Edge TPUs

	Approach
	Multi-objective Optimization Formulations
	Dependency and Pipeline Constraint
	Parameter Caching Optimization
	Communication-aware optimization
	Data Dependency Optimization

	Multi-objective Scheduling
	System Integration

	Results
	Experimental setups on Edge TPU runtime
	Inference Performance Evaluation
	Memory Allocation Evaluation
	Power and Energy Evaluation
	Optimization Complexity and Scalability
	Enabling Multi-model Co-deployment

	Conclusion
	References

