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ABSTRACT

We propose a general approach that precisely estimates the Quality-

of-Result (QoR), such as delay and area, of unseen synthesis flows

for specific designs. The main idea is leveraging LSTM-based net-

work to forecast the QoR, where the inputs are synthesis flows

represented in novel timed-flow modeling, and QoRs are ground

truth. This approach is demonstrated with 1.2 million data points

collected using 14nm, 7nm regular-voltage (RVT), and 7nm low-

voltage (LVT) technologies with twelve IC designs. The accuracy of

predicting the QoRs (delay and area) evaluated using mean absolute

prediction error (MAPE). While collecting training data points in

EDA can be extremely challenging, we propose to elaborate trans-

fer learning in our approach, which enables accurate predictions

cross different technologies and different IC designs. Our transfer

learning approach obtains estimation MAPE ≤3.7% over ∼960,000

test points collected on 7nm technologies, with only 100 data points

used for training the pre-trained LSTM network using 14nm dataset.
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1 INTRODUCTION

Targeted specialization of functionality in hardware has become ar-

guably the best means for enabling improved compute performance

and energy efficiency. However, as the complexity of modern hard-

ware systems explodes, fast and effective hardware explorations

are hard to achieve due to the lack of guarantee in the existing in

electronic design automation (EDA) toolflow. Several major limita-

tions prevent practical hardware explorations [6, 16, 19]. First, as

the hardware design and technology advance, the design space of

modern EDA tools has increased dramatically. Besides, evaluating

a given design point is extremely time-consuming, such that only a

very small sub-space of the large design space can be explored.

Recent years have seen increasing employment of decision intel-

ligence in EDA, which aims to reduce the manual efforts and boost
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the design closure process in modern toolflows [5, 10, 12–14, 17–19].

For example, various of machine learning (ML) techniques have

been used to automatically configure the tool configurations of in-

dustrial FPGA toolflow [9, 12, 15] and ASIC toolflow [5, 8, 15, 17, 19].

These works focus on end-to-end tool parameter space exploration,

which are guided by ML models trained based on either offline

[19] or online datasets [6, 12]. Moreover, exploring the sequence of

synthesis transformations (also called synthesis flow) in EDA has

been studied in an iterative training-exploration fashion through

Convolutional Neural Networks (CNNs) [17] and reinforcement

learning [5]. In addition, neural network based image classification

and image construction techniques have been leveraged in place-

ment and route (PnR), in order to accelerate design closure in the

physical design stage [10, 13, 14, 18]. Specifically, this work focuses

on optimizing synthesis flows at logic level, where the problems

can be formulated as sequential decision making [5, 17].

While recent studies demonstrate that ML can improve the pre-

dictability of different EDA heuristics and toolflows, collecting

dataset can be very challenging due to the expensive runtime of

EDA tools. Specifically, existing works on optimizing logic synthe-

sis flows [5, 17] either require a large amount of efforts for collect-

ing training dataset, or need expensive reinforcement process for

training, which are not less likely to be practical. Thus, this work

proposes a novel approach based on a novel modeling of flows along

with Long Short-Term Memories (LSTMs) networks and transfer

learning, which aims to improve both forecasting performance and

reduce the required number of data points for training the models.

The main contributions of this paper are: (1) A closed formula is

introduced to represent the search space for arbitrary types of flows.

A timed-model that models flow as a discrete sequence using 2-D

matrix. (2) An LSTM based RNN regression architecture is pro-

posed. The inputs are flows in the timed-model matrix, and ground

truth are delay and area collected after technology mapping. (3)We

propose a transfer-learning approach that adapts the model learned

from one technology node to another technology node. This offers

the ability to estimate the performance for next/future technology

nodes. (4) The approach has been demonstrated with ∼1.2 million

data points with 14nm, regular-voltage (RVT) 7nm, and low-voltage

(LVT) 7nm FinFET technologies, collected with 12 different IC de-

signs. We achieve testing mean absolute percentage error (MAPE)

≤2.0% for specific design and technology, and testing MAPE cross

technologies and designs is ≤3.7% after transfer learning. (5) The

datasets and training code will be released publicly.





section, we also compare the performance with a regressor built

using the proposed CNN model [17].

3 MODELING

This section introduces the inputs of the neural network and ground

truth for the LSTM model. The inputs are the synthesis flows that

are represented by a 2-D matrix using a novel Timed-Model. The

ground truth includes delay and area results after technology map-

ping.

3.1 Inputs: Timed-Model of flows

Table 1: Illustration of timed-model of synthesis flows using

ABC default synthesis flow resyn. Synthesis transformation

at each time spot is shown above the visualized binary ma-

trix.
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As mentioned earlier, any flow includes a set of transformations

that perform iteratively. We illustrate the concept of timed-model

using one common logic synthesis flow provided in ABC [11], resyn,

which includes six transformations: balance (b), rewrite (rw), rewrite

-z (rwz), b, rwz, b. The time-line of applying resyn to designs is

shown in Table 1. Each transformation in this flow is applied to the

design at each time frame. For example, for time in range (0,C1), the

transformation balance is applied and it finishes at C1. Then, the sec-

ond transformation rewrite starts and finishes at C2. The whole flow

finishes at C6. Note that the runtime of different transformations

can be very different; and the runtime of the same transformation

at different stage could be different as well. In this work, the run-

time of each transformation is not included in the modeling. This

means that the timed-model of the flows is considered as a discrete

sequence. Using one-hot encoding for the three transformations

in resyn, let balance=[1 0 0], rw = [0 1 0], and rwz = [0 0 1]. The

resulting timed-model of resyn is shown in Table 1.

Amore complex example is shown in Table 2. The input synthesis

flow is an ABC synthesis flow including six transformations, balance

(b), restructure (rs), rewrite (rw), refactor (rf), rewrite -z (rwz), refactor

-z (rfz), and these transformations are repeated four times. The

length of this synthesis flow is 24 such that it requires 24 time-

frames to complete. With total six transformations, the final model

of this synthesis flow is a matrix of shape (6,24) (Figure 2). This

type of matrices will be the input to the neural network for training

and inference.

3.2 Ground truth

In the context of machine learning, the ground truth is a mea-

surement of the target variable(s) for the training and testing data

points. In other words, the ground truth defines the objective(s)

of the learning model. In the scenario of training a regressor for

synthesis, taking synthesis flows as inputs, the ground truth could

be synthesis runtime, critical path delay, total logic area, XOR counts,

etc. Similarly, this can be extended to other flow performance es-

timation problem such as placement and route, with the ground

truth beingworst negative slacks, total negative slacks, routing length,

etc. In the result of this paper, the demonstration and evaluation of

the proposed approach specifically target on synthesis flows of the

open source logic synthesis framework ABC [11]. The ground truth

includes critical path delay (delay in short) and logic area (area in

short).

4 APPROACH

This section presents the implementation of LSTM based RNN

regressor, training setup and the summary of datasets.

4.1 LSTM network architecture

The RNN regressor architecture is presented in Table 3. The re-

gressor is designed with LSTM×2, Batch Normalization (BN)×4,

Dropout×1, and Dense layers×3. The first column shows the layers

and its type in a top-down order. The second column presents the

output shape of the current layer, and the last column shows the

number of parameters in each layer. The activation function of the

Dense1 and Dense2 layers is ReLu. The output layer is implemented

with a dense layer where the number of units equals to the ground

truth dimension, 38<. In this work, the ground truth dimension is

one, i.e., either area or delay. The activation function for the last

layer is Linear.

4.2 Datasets

The datasets are generated by logic synthesis tool ABC [11], with

100,000 random flows generated. All 100,000 flows are applied to

three different designs, 64-bit Montgomery Multiplier, 64-bit ALU

and 128-bit AES core, using 14nm, 7nm RVT and 7nm LVT tech-

nologies. For exploring the transferability cross designs and tech-

nologies, we apply the first 20,000 random flows to nine more de-

signs with different IPs (intellectual property) (Table 4), including

cryptographic hash SHA, RISC (Reduced Instruction Set Computer)

architecture Open RISC 1200 OR1200, etc. These designs are ob-

tained from OpenCore [1]. Note that some of the random flows

fail because of the internal ABC crashes (segment fault reported).

There are three failure cases observed while applying to the Mont-

gomery multiplier, and 263 failure cases for the AES core. There

are ∼300,000 data points generated using 14nm technology with 3

designs, and ∼960,000 data points using 7nm technologies with 12

designs. The summary of the datasets is shown in Table 4.

Random flows: Each random flow includes six different transfor-

mations, and each transformation can repeat four times (example

shown in Table 2), resulting in totally twenty-four transformations

in each flow. These 100,000 random flows are generated by ran-

domly permuting these twenty-four transformations.





(a) Sub-set 1: MAPE=0.37% (b) Sub-set 2: MAPE=0.37% (c) Sub-set 3: MAPE=0.36% (d) Sub-set 4: MAPE=0.37%

Figure 3: Visualization of delay prediction with the remaining ∼80,000 data points of 14nm Montgomery dataset as testing

inputs. Each sub-set includes 20,000 test results (last sub-set includes 19,997). Overall prediction accuracy over 79,997 test

points is 99.6%.

6 RESULT

First, the pre-trained model is evaluated with 14nm datasets by

evaluating the delay and area prediction accuracy, with 20,000

data points for training and ∼80,000 for evaluation for each design

(Table 4). Secondly, we evaluate our transfer learning approaches

on the delay and area of the 7nm RVT/LVT datasets. The training

and testing are conducted on a server with 28 Intel Xeon CPU

E5-2690 v4 processors and 256 GB memory. The experiments are

implemented in Python3 using Tensorflow-Keras [2].

6.1 Evaluation within 14nm datasets

The results in this section use the training setups provided in Sec-

tion Approach, with epochs=1000, and 20% training data for val-

idation. The training results using the 14nm datasets (delay) of

64-bit Montgomery multiplier, in which the training data points

fit perfectly after 1000 epochs with MAPE 0.25 (N-MAPE will be

99.75). The model is then tested using the remaining 80,000 14nm

data points. The testing results are shown in Figure 3. The testing

dataset is randomly split into four subsets, with each sub-set includ-

ing ∼20,000 points. Unlike most machine learning tasks, we

intentionally use small portion of the dataset to train the

network and the remaining dataset for testing in order to

demonstrate the generalizability of the proposed approach.

This is particularly important for EDA tasks since collecting

data points is very challenging. This is used to demonstrate that

the prediction accuracy does not differ much while choosing dif-

ferent inputs. The MAPEs for delay prediction are 0.37, 0.37, 0.36,

and 0.37, with an overall MAPE 0.37. Similarly, we evaluate our

approach using the 14nm datasets of all three designs, with average

prediction MAPE≤ 2.0% with ∼80,000 data points for each QoR

objective (see Table 4).

6.2 Transfer Learning: cross designs and
technologies

This section presents the evaluation results of transfer learning

using the approaches shown in Figure 2. The testing datasets are

the 7nm datasets shown in Table 4. We first show the complete

delay prediction results using 64-bit GFmultiplier design. The initial

model is pre-trained with 20,000 14nm data points. Then, we update

the weights of all layers of this model with 100 7nm data points

from the same design. The rest data points for each technology

are used for testing. The prediction accuracy is ≥99.5% for both

7nm technologies. Note that these show the transferability cross

the technologies only.

(a) 100k 7nm RVT predictions.

MAPE = 0.5 (N-MAPE = 99.5)

(b) 100k 7nm LVT predictions.

MAPE = 0.4 (N-MAPE = 99.6)

Figure 4: Visualization of 7nm delay predictions using trans-

fer learning with prediction accuracy ≥99.5%. Initial model

is trained with 64-bit GF multiplier 14nm datasets, and is

updated with 100 7nm data points.

To explore the transferability cross both designs and technolo-

gies, we apply transfer learning to all 12 designs with the initial

model pre-trained with 14nm GF delay dataset. Note that indus-

trial studies indicate that machine learning based electronic design

systems require a minimum of 95% accuracy for performance es-

timation [3]. More importantly, these systems are required to be

stable (i.e., have similar accuracy) for different types of designs. The

results of two approaches, updating dense layers only and updating

all layers, are included in Figure 5. To demonstrate the advantages of

transfer learning, the results of training a new model from scratch

using the same amount of data points,without pre-training on 14nm

data first, are included as a baseline. It shows that transfer learning

by updating all layers provides the best results over all designs,

for delay and area estimations. Our approach obtains MAPE≤3.7%

(N-MAPE≥96.3%) for delay and area over all designs, while model

is trained with only 100 data points collected on 7nm. In compari-

son to transfer learning approaches, training a new model without

transfer learning yields much worse accuracy due to insufficient

training data. This indicates that transfer learning is helpful when

the size of available training data is limited.

We also compare our LSTM network with the CNN based ap-

proach.Wemodify the model released in [17] by 1) changing the the




