Decision Making in Synthesis cross Technologies using LSTMs
and Transfer Learning

Cunxi Yu
University of Utah
Salt Lake City, UT, USA
cunxi.yu@utah.edu

ABSTRACT

We propose a general approach that precisely estimates the Quality-
of-Result (QoR), such as delay and area, of unseen synthesis flows
for specific designs. The main idea is leveraging LSTM-based net-
work to forecast the QoR, where the inputs are synthesis flows
represented in novel timed-flow modeling, and QoRs are ground
truth. This approach is demonstrated with 1.2 million data points
collected using 14nm, 7nm regular-voltage (RVT), and 7nm low-
voltage (LVT) technologies with twelve IC designs. The accuracy of
predicting the QoRs (delay and area) evaluated using mean absolute
prediction error (MAPE). While collecting training data points in
EDA can be extremely challenging, we propose to elaborate trans-
fer learning in our approach, which enables accurate predictions
cross different technologies and different IC designs. Our transfer
learning approach obtains estimation MAPE <3.7% over ~960,000
test points collected on 7nm technologies, with only 100 data points
used for training the pre-trained LSTM network using 14nm dataset.

ACM Reference Format:

Cunxi Yu and Wang Zhou. 2020. Decision Making in Synthesis cross Tech-
nologies using LSTMs and Transfer Learning. In 2020 ACM/IEEE Workshop
on Machine Learning for CAD (MLCAD °20), November 16-20, 2020, Virtual
Event, Iceland. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3380446.3430638

1 INTRODUCTION

Targeted specialization of functionality in hardware has become ar-
guably the best means for enabling improved compute performance
and energy efficiency. However, as the complexity of modern hard-
ware systems explodes, fast and effective hardware explorations
are hard to achieve due to the lack of guarantee in the existing in
electronic design automation (EDA) toolflow. Several major limita-
tions prevent practical hardware explorations [6, 16, 19]. First, as
the hardware design and technology advance, the design space of
modern EDA tools has increased dramatically. Besides, evaluating
a given design point is extremely time-consuming, such that only a
very small sub-space of the large design space can be explored.
Recent years have seen increasing employment of decision intel-
ligence in EDA, which aims to reduce the manual efforts and boost

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MLCAD °20, November 16—20, 2020, Virtual Event, Iceland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8026-3/20/11...$15.00
https://doi.org/10.1145/3380446.3430638

Wang Zhou
IBM Thomas J. Watson Research Center
Yorktown Heights, NY, USA

the design closure process in modern toolflows [5, 10, 12-14, 17-19].
For example, various of machine learning (ML) techniques have
been used to automatically configure the tool configurations of in-
dustrial FPGA toolflow [9, 12, 15] and ASIC toolflow [5, 8, 15, 17, 19].
These works focus on end-to-end tool parameter space exploration,
which are guided by ML models trained based on either offline
[19] or online datasets [6, 12]. Moreover, exploring the sequence of
synthesis transformations (also called synthesis flow) in EDA has
been studied in an iterative training-exploration fashion through
Convolutional Neural Networks (CNNs) [17] and reinforcement
learning [5]. In addition, neural network based image classification
and image construction techniques have been leveraged in place-
ment and route (PnR), in order to accelerate design closure in the
physical design stage [10, 13, 14, 18]. Specifically, this work focuses
on optimizing synthesis flows at logic level, where the problems
can be formulated as sequential decision making [5, 17].

While recent studies demonstrate that ML can improve the pre-
dictability of different EDA heuristics and toolflows, collecting
dataset can be very challenging due to the expensive runtime of
EDA tools. Specifically, existing works on optimizing logic synthe-
sis flows [5, 17] either require a large amount of efforts for collect-
ing training dataset, or need expensive reinforcement process for
training, which are not less likely to be practical. Thus, this work
proposes a novel approach based on a novel modeling of flows along
with Long Short-Term Memories (LSTMs) networks and transfer
learning, which aims to improve both forecasting performance and
reduce the required number of data points for training the models.
The main contributions of this paper are: (1) A closed formula is
introduced to represent the search space for arbitrary types of flows.
A timed-model that models flow as a discrete sequence using 2-D
matrix. (2) An LSTM based RNN regression architecture is pro-
posed. The inputs are flows in the timed-model matrix, and ground
truth are delay and area collected after technology mapping. (3) We
propose a transfer-learning approach that adapts the model learned
from one technology node to another technology node. This offers
the ability to estimate the performance for next/future technology
nodes. (4) The approach has been demonstrated with ~1.2 million
data points with 14nm, regular-voltage (RVT) 7nm, and low-voltage
(LVT) 7nm FinFET technologies, collected with 12 different IC de-
signs. We achieve testing mean absolute percentage error (MAPE)
<2.0% for specific design and technology, and testing MAPE cross
technologies and designs is <3.7% after transfer learning. (5) The
datasets and training code will be released publicly.

2 BACKGROUND
2.1 Synthesis flows and Search Space

Synthesis flows are a set of synthesis transformations that apply
iteratively to the input designs. The synthesis transformations are
mainly involved in three stages of the design flow: high-level syn-
thesis (HLS), logic synthesis (LS) and placement and route (PnR). For
different types of electronic designs, the flows need to be changed
accordingly. In general, there are two types of flows, none-repetition
flows and m-repetition flows [17]. Given n unique transformations, a
flow developed with these transformations is called none-repetition
flow if each transformation appears only once. The length of none-
repetition flows is n. For m-repetition flows, each transformation
appears m times. The length of m-repetition flows is m-n. In [17],
the upper bound of the search space for both types of flows are
discussed. For none-repetition flows, a closed representation n! is
the upper bound of its search space. An iterative formula is used
to describe the search space of m-repetition. However, the upper
bound was given as a range without a closed formula representa-
tion. A closed formula is introduced to describe the search space of
repetition flows. The search space for m-repetition flows is a multi-
set permutation problem. Specifically, for m-repetition flows with
n unique transformations, the search space is shown in Equation 1.

(n-m)!

(mh)"

Using the multiset permutation concept, we generalize the for-
mula to describe the search space for any type of flows. Let n
be the number of unique transformation, the M-repetition flows,
M={m1, my, ..., my}, where m; is the number of repetitions of the
it? transformation. The total number of possible flows is shown in
Equation 2.

M

(my+mg + - -mp)!
(m1)(ma!) - -+ (mn!)

2.2 Recurrent neural network

S(m,n) =

@

Recurrent Neural Network (RNN) is a class of artificial neural net-
work with a chain of units in a directed graph sequence. RNNs per-
form the same computations for each unit in a sequence, and output
states depend on the previous states. In theory, RNNs can make use
of information in arbitrarily long sequences, but in practice, they
are limited to looking back only a few steps, called “Long-Term
Dependencies” problem [4]. LSTMs [4] are explicitly designed to
address the long-term dependency problem by adding control gates
to the recurrent units. Such controlled states are referred to as a
gated state or gated memory, which have been implemented as part
of LSTMs or other recurrent elements. An RNN composed of LSTM
units is often called an LSTM network. A common LSTM unit is
composed of a cell, an input gate, an output gate and a forget gate.
The cell is responsible for “remembering” values over arbitrary time
intervals.

2.3 Related Work and Motivating Example

Yu et al. [17] presented a deep learning based approach for gen-
erating design-specific synthesis flows for ABC. The main idea
of this approach is formulating the flow optimization problem as
a Multiclass Classification problem. The authors proposed to use

Convolutional Neural Network (CNN) based classifier that includes
two Convolution+MaxPool layers and three Dense layers. It shows
that the classifier can successfully distinguish the best and worst
flows given the design objectives. However, there are two main lim-
itations: 1) The classifier can only classify the flows into different
performance classes, however, it cannot distinguish the perfor-
mance of different flows within the same class. 2) The prediction
accuracy heavily relies on the labeling rules since the labels of the
flows are post-created based on the Quality-of-Result (QoR).

It is obvious that the first limitation comes from the idea of flow
classification. Therefore, we focus on illustrating the second lim-
itation. The single-metric and multi-metric rules are introduced
in [17] that label the synthesis flows based on single QoR or mul-
tiple QoR metrics, such as area, delay, etc. The labeling rule for
seven-classes labeling requires six QoR delimiters. For example,
let the six delimiters be the data point at 7%, 20%, 40%, 65%, 80%,
and 93% position of training datasets (assuming the training set
is sorted from best-to-worse QoR), namely Labeling rule 1 (Figure
1a). Alternatively, let the six delimiters be the data point at 5%, 15%,
40%, 65%, 90%, and 95% position of training datasets, namely Label-
ing rule 2 (Figure 1b). We compare the classification performance
of two labeling rules using the CNN architecture and the 64-bit
Montgomery Multiplier dataset proposed in [17]. The training and
testing of CNN Classifiers are done with Keras using Tensorflow as
backend. The results are shown in the confusion matrices in Figure
1.

Normalized confusion matrix
0 0.01 0.01 0.00 0.00 0.00 0.00 0 0.44 0.10 0.00 0.00 0.00 0.00
0.8

140.07 0.14 0.02 0.00 0.00 0.00 0.8 14036 0.01 0.00 0.00 0.00 0.00 0.7
0.00 0.10 0.12 0.09 0.00 0.01 240.01 0.06 ﬂ 0.06 0.02 0.00 0.00 0.6
0.6

Normalized confusion matrix

~

o]
o o 0.5
= 340.00 0.01 0.20 0.14 0.01 0.02 & 340.00 0.00 0.06 HUEFS 0.31 0.00 0.06
] E] 0.4
£ 0.4

440.00 0.00 0.03 0.17 0.10 0.04 440.00 0.00 0.00 0.41 0.07 0.01 03

w

0.00 0.00 0.01 0.01 0.19 ﬂ 0.15 02 5 0.00 0.00 0.00 0.02 0.19 0.15 0.2
0.00 0.00 0.00 0.00 0.02 0.12 ﬂ 64 0.00 0.00 0.00 0.00 0.01 0.10 01
0.0 0.0

N ~ voo» > K © N e > 3 ©
Predicted label Predicted label

o

(a) Labeling rule 1. (b) Labeling rule 2.
Figure 1: Confusion matrices of two classifiers that trained
with two different labeling rules.

As mentioned in [17], the main tasks are searching for the best
(class 0) and worst (class 6) flows for a given design objective. The
results show that labeling rule 1 provides 98% accuracy for predict-
ing class 0, and 86% accuracy for class 6; labeling rule 2 provides
only 46% accuracy for class 0, and 89% for class 6. We can see that
using different labeling rules, the performance of the classifiers can
be very different. Note that the labeling rule input to this approach,
which should be defined by the user. These two limitations offer
the main motivation for our regression based approach.

As described previously, a synthesis flow is a sequence of trans-
formations. Mostly in IC design, QoR of a large number of synthe-
sized designs is a continuous variable. To achieve accurate estima-
tion of a continuous variable that is related to sequential behaviors,
we explore LSTM network regressor in this work. In the result

section, we also compare the performance with a regressor built
using the proposed CNN model [17].

3 MODELING

This section introduces the inputs of the neural network and ground
truth for the LSTM model. The inputs are the synthesis flows that
are represented by a 2-D matrix using a novel Timed-Model. The
ground truth includes delay and area results after technology map-

ping.

3.1 Inputs: Timed-Model of flows

Table 1: Illustration of timed-model of synthesis flows using
ABC default synthesis flow resyn. Synthesis transformation
at each time spot is shown above the visualized binary ma-
trix.

51 t3 t5
balance l Wz l ™wz l
— = — = — =
7 7 7
™w T balance T balance T
t2 ty te

(ale] 6t [u]t [t]

[b[rw[rwz[b[rwz[b[

As mentioned earlier, any flow includes a set of transformations
that perform iteratively. We illustrate the concept of timed-model
using one common logic synthesis flow provided in ABC [11], resyn,
which includes six transformations: balance (b), rewrite (rw), rewrite
-z (rwz), b, rwz, b. The time-line of applying resyn to designs is
shown in Table 1. Each transformation in this flow is applied to the
design at each time frame. For example, for time in range (0,t1), the
transformation balance is applied and it finishes at #;. Then, the sec-
ond transformation rewrite starts and finishes at t,. The whole flow
finishes at tg. Note that the runtime of different transformations
can be very different; and the runtime of the same transformation
at different stage could be different as well. In this work, the run-
time of each transformation is not included in the modeling. This
means that the timed-model of the flows is considered as a discrete
sequence. Using one-hot encoding for the three transformations
in resyn, let balance=[1 0 0], rw = [0 1 0], and rwz = [0 0 1]. The
resulting timed-model of resyn is shown in Table 1.

A more complex example is shown in Table 2. The input synthesis
flow is an ABC synthesis flow including six transformations, balance
(b), restructure (rs), rewrite (rw), refactor (rf), rewrite -z (rwz), refactor
-z (rfz), and these transformations are repeated four times. The
length of this synthesis flow is 24 such that it requires 24 time-
frames to complete. With total six transformations, the final model
of this synthesis flow is a matrix of shape (6,24) (Figure 2). This
type of matrices will be the input to the neural network for training
and inference.

3.2 Ground truth

In the context of machine learning, the ground truth is a mea-
surement of the target variable(s) for the training and testing data
points. In other words, the ground truth defines the objective(s)
of the learning model. In the scenario of training a regressor for
synthesis, taking synthesis flows as inputs, the ground truth could
be synthesis runtime, critical path delay, total logic area, XOR counts,
etc. Similarly, this can be extended to other flow performance es-
timation problem such as placement and route, with the ground
truth being worst negative slacks, total negative slacks, routing length,
etc. In the result of this paper, the demonstration and evaluation of
the proposed approach specifically target on synthesis flows of the
open source logic synthesis framework ABC [11]. The ground truth
includes critical path delay (delay in short) and logic area (area in
short).

4 APPROACH

This section presents the implementation of LSTM based RNN
regressor, training setup and the summary of datasets.

4.1 LSTM network architecture

The RNN regressor architecture is presented in Table 3. The re-
gressor is designed with LSTMX2, Batch Normalization (BN)x4,
Dropoutx1, and Dense layersx3. The first column shows the layers
and its type in a top-down order. The second column presents the
output shape of the current layer, and the last column shows the
number of parameters in each layer. The activation function of the
Densel and Dense2 layers is ReLu. The output layer is implemented
with a dense layer where the number of units equals to the ground
truth dimension, dim. In this work, the ground truth dimension is
one, i.e., either area or delay. The activation function for the last
layer is Linear.

4.2 Datasets

The datasets are generated by logic synthesis tool ABC [11], with
100,000 random flows generated. All 100,000 flows are applied to
three different designs, 64-bit Montgomery Multiplier, 64-bit ALU
and 128-bit AES core, using 14nm, 7nm RVT and 7nm LVT tech-
nologies. For exploring the transferability cross designs and tech-
nologies, we apply the first 20,000 random flows to nine more de-
signs with different IPs (intellectual property) (Table 4), including
cryptographic hash SHA, RISC (Reduced Instruction Set Computer)
architecture Open RISC 1200 OR1200, etc. These designs are ob-
tained from OpenCore [1]. Note that some of the random flows
fail because of the internal ABC crashes (segment fault reported).
There are three failure cases observed while applying to the Mont-
gomery multiplier, and 263 failure cases for the AES core. There
are ~300,000 data points generated using 14nm technology with 3
designs, and ~960,000 data points using 7nm technologies with 12
designs. The summary of the datasets is shown in Table 4.
Random flows: Each random flow includes six different transfor-
mations, and each transformation can repeat four times (example
shown in Table 2), resulting in totally twenty-four transformations
in each flow. These 100,000 random flows are generated by ran-
domly permuting these twenty-four transformations.

Table 2: Example of a 24 transformations long 4-repetition synthesis flow using the presented timed-model, with six unique
transformations, {rw, rwz, b, rs, rfz, rf}. The complete synthesis flow is shown in the second row and synthesis transformation

at each time spot is shown above the visualized binary matrix.

[(hlels [l |oles b

[tio [t [tie [i3 [tia | t15

[tie [tir [t1is [tio | too [to1 [ta2 [tos [tea |

|bIrflrwzlrw|rs|rfz|bIrwlrwz]rf |rs

[z T b

Irwlrwzlrwlrslrleb|rf|rwz|rfz|rs|rf|

o ——

Table 3: LSTM based RNN model architecture, including the
output shape and number of parameters of each layer.

[Layer:Type | Output Shape | # Param

TLSTM1 (None, 24, 128) 68608
2:BN1 (None, 24, 128) 512
3:LSTM2 (None, 128) 131584
4BN2 (None, 128) 512
5:Densel (None, 30) 3870
6:BN3 (None, 30) 120
7:Dense2 (None, 30) 930
8:BN4 (None, 30) 120
9:Dropout (None, 30) 0
10:Dense3 (None, dim) 31xdim

Inputs and Labels: The inputs of the neural network are the flows
using the timed-model matrix representation with shape (6,24). The
labels include the delay/area results by applying the random flow
following by ABC technology mapping (command: map -v).

Table 4: Summary of Datasets. Data points are generated
with 100,000 random flows using three different technology
libraries using the first three designs. For the rest of the
designs, the data points are collected with 20,000 random
flows using the 7nm RVT and LVT FinFET technologies. The
ground truth are the QoRs (delay or area) that are collected
after technology mapping. *RVT = Regular Voltage Transistor;
*LVT = Low Voltage Transistor.

Design 14nm 7nm RVT 7nm LVT
64-bit Montgomery 99,997 99,997 99,997
64-bit ALU 100,000 100,000 100,000
128-bit AES core 99,737 99,737 99,737
LUSPEng - 20,000 20,000
Stereovison0 20,000 20,000
Stereovisonl 20,000 20,000
SHA 20,000 20,000
raygentop 20,000 20,000
OR1200 20,000 20,000
Boundtop 20,000 20,000
blob_merge - 20,000 20,000
bgm - 20,000 20,000
[Inputs Ground truth |
I Flow] (6, 24) [Delay/Area I (1,1) |

4.3 Training setups and pre-processing

Training setups: The loss function is the mean squared error (MSE)
and is optimized with Adam optimizer [7] with learning rate=0.001,
£1=0.9, f2=0.999. The batch size used in this work is 256 and models
are trained for 1000 epochs.

Pre-processing (Data normalization): The training data points
are normalized before model training. Specifically, the label vectors

are normalized by subtracting its mean and dividing its range. The
mean and range are used to reconstruct the ground truth at testing.

5 TRANSFERABILITY CROSS DESIGNS AND
TECHNOLOGIES

Transfer Learning e ——— =
14nm Datasets / 7nm LVT/RVT Datasets A

~80,000 x 3

14nm Datasets

20,000 x 3

Figure 2: Overview of transfer-learning cross different tech-
nologies. Initial model is trained using 20% of the 14nm
datasets. The pre-trained model is updated using <100 new
data points, which are produced using unseen 7nm technolo-
gies and IC designs.

<=100 ~960,000

;
,
.
%, :
.
.
.

Update l Testing

|
Y
Model (1 4nm]7 Updated Model |
[\ /
\ /
N .,

We explore the transferability over different technologies and
designs using the approach shown in Figure 2. The main idea is to
utilize the model pre-trained with 14nm data points and update the
model with little data points to predict for unseen 7nm technologies
and designs shown in Table 4. In this work, we restrict the number
of data points for transfer learning to be <100. Specifically, the
results of transfer learning using {10, 25, 50, 100} data points are
included in the result section. The evaluations are made using the
rest of the 7nm datasets.

5.1 Transfer Learning Strategies

Two transfer learning approaches are implemented.

Updating Dense Layers: This approach takes the pre-trained
model and turns the LSTM layers to be non-trainable, i.e., layers 1-4
shown in Table 3. The main intuitions of this approach are that 1)
the sequential behavior of the synthesis flows could be similar over
different designs and technologies, and 2) the sequential features
have been learned mostly in the LSTM layers. In this case, there
are only about 5,000 parameters in the pre-trained model that need
to be updated during transfer learning.

Updating All Layers: However, if the sequential behaviors of the
synthesis flows are different over different designs and technologies,
the model could fail to converge without updating the LSTM layers.
Hence, this approach updates the parameters of all layers in the
pre-trained model.

1500 & 1500

1450 1450

1400 1400

Prediction (ps)
Prediction (ps)

1350 1350

¥

v

1300 1300

12! 125¢

Prediction (ps)

1500 1500

1450 1450

1400 1400

Prediction (ps)

1350 1350

1300 1300

12! 12!

50)
1250 1300 1350 1400 1250

True Delay (ps)

(a) Sub-set 1: MAPE=0.37%

1450 1500 1300 1350 1400

True Delay (ps)

(b) Sub-set 2: MAPE=0.37%

1450 1500

50 501
1250 1300 1350 1400 1250

True Delay (ps)

(c) Sub-set 3: MAPE=0.36%

1450 1500 1300 1350 1400

True Delay (ps)

(d) Sub-set 4: MAPE=0.37%

1450 1500

Figure 3: Visualization of delay prediction with the remaining ~80,000 data points of 14nm Montgomery dataset as testing
inputs. Each sub-set includes 20,000 test results (last sub-set includes 19,997). Overall prediction accuracy over 79,997 test

points is 99.6%.

6 RESULT

First, the pre-trained model is evaluated with 14nm datasets by
evaluating the delay and area prediction accuracy, with 20,000
data points for training and ~80,000 for evaluation for each design
(Table 4). Secondly, we evaluate our transfer learning approaches
on the delay and area of the 7nm RVT/LVT datasets. The training
and testing are conducted on a server with 28 Intel Xeon CPU
E5-2690 v4 processors and 256 GB memory. The experiments are
implemented in Python3 using Tensorflow-Keras [2].

6.1 Evaluation within 14nm datasets

The results in this section use the training setups provided in Sec-
tion Approach, with epochs=1000, and 20% training data for val-
idation. The training results using the 14nm datasets (delay) of
64-bit Montgomery multiplier, in which the training data points
fit perfectly after 1000 epochs with MAPE 0.25 (N-MAPE will be
99.75). The model is then tested using the remaining 80,000 14nm
data points. The testing results are shown in Figure 3. The testing
dataset is randomly split into four subsets, with each sub-set includ-
ing ~20,000 points. Unlike most machine learning tasks, we
intentionally use small portion of the dataset to train the
network and the remaining dataset for testing in order to
demonstrate the generalizability of the proposed approach.
This is particularly important for EDA tasks since collecting
data points is very challenging. This is used to demonstrate that
the prediction accuracy does not differ much while choosing dif-
ferent inputs. The MAPEs for delay prediction are 0.37, 0.37, 0.36,
and 0.37, with an overall MAPE 0.37. Similarly, we evaluate our
approach using the 14nm datasets of all three designs, with average
prediction MAPE< 2.0% with ~80,000 data points for each QoR
objective (see Table 4).

6.2 Transfer Learning: cross designs and
technologies

This section presents the evaluation results of transfer learning
using the approaches shown in Figure 2. The testing datasets are
the 7nm datasets shown in Table 4. We first show the complete
delay prediction results using 64-bit GF multiplier design. The initial
model is pre-trained with 20,000 14nm data points. Then, we update
the weights of all layers of this model with 100 7nm data points
from the same design. The rest data points for each technology

are used for testing. The prediction accuracy is >99.5% for both
7nm technologies. Note that these show the transferability cross
the technologies only.

680

Prediction (ps)
@
2
8
Prediction (ps)

600 620 640 660

True Delay (ps)

500 520 540

True Delay (ps)

(b) 100k 7nm LVT predictions.
MAPE = 0.4 (N-MAPE = 99.6)

560 580

(a) 100k 7nm RVT predictions.
MAPE = 0.5 (N-MAPE = 99.5)

Figure 4: Visualization of 7nm delay predictions using trans-
fer learning with prediction accuracy >99.5%. Initial model
is trained with 64-bit GF multiplier 14nm datasets, and is
updated with 100 7nm data points.

To explore the transferability cross both designs and technolo-
gies, we apply transfer learning to all 12 designs with the initial
model pre-trained with 14nm GF delay dataset. Note that indus-
trial studies indicate that machine learning based electronic design
systems require a minimum of 95% accuracy for performance es-
timation [3]. More importantly, these systems are required to be
stable (i.e., have similar accuracy) for different types of designs. The
results of two approaches, updating dense layers only and updating
all layers, are included in Figure 5. To demonstrate the advantages of
transfer learning, the results of training a new model from scratch
using the same amount of data points, without pre-training on 14nm
data first, are included as a baseline. It shows that transfer learning
by updating all layers provides the best results over all designs,
for delay and area estimations. Our approach obtains MAPE<3.7%
(N-MAPE>96.3%) for delay and area over all designs, while model
is trained with only 100 data points collected on 7nm. In compari-
son to transfer learning approaches, training a new model without
transfer learning yields much worse accuracy due to insufficient
training data. This indicates that transfer learning is helpful when
the size of available training data is limited.

We also compare our LSTM network with the CNN based ap-
proach. We modify the model released in [17] by 1) changing the the

output layer from multi-channel softmax output to single-channel
linear output and 2) adding BN following the Convolutional layers.
For fair comparison, we only compare the delay/area estimation
accurate for GF, AES, and ALU designs that were used in that
work. It shows that with 100 training data points, CNN regressor
performs much worse than the LSTM regressor (Figure 5). The
transfer-learning results using CNN approach are not included
since they perform worse than training new CNN model.

100 -~ Dense-Only 100
- ,,/«'—A\\—"\‘ Dense-Only 50
-@- Dense-Only 25
= \//,\ e —A— All-layers 100
& 90 -A- All-layers 50
> \\. -A- Alllayers 25
e 5§ New Model 100
g . " | ~#- New Model 50
< 80 New Model 25
% CNN New 100
*
\»B\ae@‘ Dq\sxn“ s ‘gg&g“ﬂ@ “&&V \(\g@%qﬁ‘ o« gﬂ“ »“
(a) N-MAPE of Delay Prediction.
100 -~ Dense-Only 100
Dense-Only 50
-@- Dense-Only 25
_. 9 —&— Alllayers 100
] -A- All-layers 50
a‘ ~A- All-layers 25
€ 80 New Model 100
g ~#- New Model 50
< New Model 25
% CNN New 100
70
*

»\)ﬁ,@: "f:“ q\s*"%‘“‘ qe‘\xo ﬂw “&o\’ \(\g@ggm oo ng\lﬁ Y
e
(b) N-MAPE of Area Prediction.

Figure 5: Evaluation of two transfer learning approaches us-
ing 25/50/100 data points.

Finally, we try to find the minimum number of data points for
transfer learning to achieve reasonable accuracy. Specifically, we
choose the approach of updating all layers, and set the number of
training data points to 5/10/25. The results are shown in Figure
6. For both delay and area, the estimation accuracy significantly
decreases with <10 data points. This suggests that at least 25 data
points are needed for the proposed transfer learning approach
to achieve stable estimation accuracy cross different designs and
technologies.

—< Delay 25
Delay 10
-<- Delay 5
~B- Area 25
- Area2s
-®- Areas
90

85

Accuracy (%)

80

75
\»ﬂ‘,ea‘ ' q\(,\o(‘ q\s\dh}*

‘\ﬂ“ o ““e‘“ “\e@%s‘“ o« E;,,ﬂ“ e

Figure 6: Evaluation of transfer learning (updating all lay-
ers) for delay and area estimation using 5/10/25 data points.

7 CONCLUSION

This paper presents an RNN regression based approach that pre-
cisely estimates the delay and area of synthesis flows. The proposed

RNN regressor is constructed using LSTM network with batch nor-
malization and dense layers. To enable accurate predictions for
future technologies and different designs, we propose a transfer-
learning approach that utilizes the pre-trained model and requires
much less training data. The demonstrations are made with logic
synthesis tool ABC using 14nm and 7nm FinFET technologies, and
models are tested over 1.2 million data points. The results show
the prediction accuracy of delay and area is >98.0% for single tech-
nology, and the prediction accuracy after transfer-learning cross
designs and technologies is >96.3% with only 100 new data points.
This demonstrates that the proposed transfer learning approach
can effectively learn to estimate QoR for unseen technologies and
designs. Future work will focus on performance estimations at
physical layout level (e.g., silicon routing congestion), and 5nm
technologies.

REFERENCES

[1] [n.d.]. OpenCores. URL https://opencores.org ([n.d.]).

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[3] Jeft Dyck. 2018. Mentor, A Siemens Business: Production Ready Machine Learning
for EDA. In Design Automation Conference (DAC’18).

[4] Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735-1780.

[5] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. 2019.
DRILLS: Deep Reinforcement Learning for Logic Synthesis. arXiv preprint
arXiv:1911.04021 (2019).

[6] Nachiket Kapre, Harnhua Ng, Kirvy Teo, and Jaco Naude. 2015. InTime: A Ma-
chine Learning Approach for Efficient Selection of FPGA CAD Tool Parameters.
(Feb. 2015).

[7] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[8] Dandan Li, Shuzhen Yao, Yu-Hang Liu, Senzhang Wang, and Xian-He Sun. 2016.
Efficient Design Space Exploration via Statistical Sampling and AdaBoost Learn-
ing. DAC (2016).

[9] Shuangnan Liu, Francis CM Lau, and Benjamin Carrion Schafer. 2019. Accelerat-

ing fpga prototyping through predictive model-based hls design space exploration.

In 2019 56th ACM/IEEE Design Automation Conference (DAC). IEEE, 1-6.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori,

Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae, et al.

2020. Chip Placement with Deep Reinforcement Learning. arXiv preprint

arXiv:2004.10746 (2020).

Alan Mishchenko et al. [n.d.]. ABC: A System for Sequential Synthesis and

Verification. URL http://www. eecs. berkeley. edu/alanmi/abc ([n. d.]).

Benjamin Carrion Schafer and Zi Wang. 2019. High-level synthesis design space

exploration: Past, present and future. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems (2019).

Haoyu Yang, Shuhe Li, Yuzhe Ma, Bei Yu, and Evangeline FY Young. 2018. GAN-

OPC: Mask optimization with lithography-guided generative adversarial nets. In

DAC.

Haoyu Yang, Piyush Pathak, Frank Gennari, Ya-Chieh Lai, and Bei Yu. 2019.

DeePattern: Layout pattern generation with transforming convolutional auto-

encoder. In DAC’2019. 1-6.

[15] Cunxi Yu. 2020. FlowTune: Practical Multi-armed Bandits in Boolean Opti-

mization. In International Conference On Computer Aided Design (ICCAD’2020).

IEEE/ACM, 234-241.

Cunxi Yu, Chau-Chin Huang, Gi-Joon Nam, Mihir Choudhury, Victor N Kravets,

Andrew Sullivan, Maciej Ciesielski, and Giovanni De Micheli. 2018. End-to-end

industrial study of retiming. In 2018 IEEE Computer Society Annual Symposium

on VLSI (ISVLSI). IEEE, 203-208.

[17] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. 2018. Developing synthe-
sis flows without human knowledge. In Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018. 50:1-
50:6.

[18] Cunxi Yu and Zhiru Zhang. 2019. Painting on placement: Forecasting routing

congestion using conditional generative adversarial nets. In Proceedings of the

56th Annual Design Automation Conference 2019. 1-6.

Matthew M. Ziegler, Ramon Bertran Monfort, Alper Buyuktosunoglu, and Pradip

Bose. 2017. Machine Learning Techniques for Taming the Complexity of Modern

Hardware Design. IBM Journal of Research and Development 61, 4 (2017), 13.

[10

[11

[12

(13

(14

[16

[19

