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ABSTRACT
Recent years have seen increasing employment of decision intel-

ligence in electronic design automation (EDA), which aims to re-

duce the manual efforts and boost the design closure process in

modern toolflows. However, existing approaches either require a

large number of labeled data for training or are limited in practi-

cal EDA toolflow integration due to computation overhead. This

paper presents a generic end-to-end and high-performance domain-

specific, multi-stage multi-armed bandit framework for Boolean

logic optimization. This framework addresses optimization prob-

lems on a) And-Inv-Graphs (# nodes), b) Conjunction Normal

Form (CNF) minimization (# clauses) for Boolean Satisfiability, c)
post static timing analysis (STA) delay and area optimization for

standard-cell technology mapping, and d) FPGA technology map-

ping for 6-in LUT architectures. Moreover, the proposed framework

has been integrated with ABC [1], Yosys [2], VTR [3], and industrial

tools. The experimental results demonstrate that our framework

outperforms both hand-crafted flows [1] and ML explored flows

[4, 5] in quality of results, and is orders of magnitude faster com-

pared to ML-based approaches [4, 5].

1 INTRODUCTION
Targeted specialization of functionality in hardware has become ar-

guably the best means for enabling improved compute performance

and energy efficiency. However, as the complexity of modern hard-

ware systems explodes, fast and effective hardware explorations

are hard to achieve due to the lack of guarantee in the existing in

electronic design automation (EDA) toolflow. Several major lim-

itations prevent practical hardware explorations [6–8]. First, as

the hardware design and technology advance, the design space of

modern EDA tools has increased dramatically. Besides, evaluating

a given design point is extremely time-consuming, such that only

a very small sub-space of the large design space can be explored.

Last but not least, while initialization of design space exploration

is important for the final convergence, it is difficult to initialize the

search for unseen designs effectively.

Recent years have seen increasing employment of decision intel-

ligence in EDA, which aims to reduce the manual efforts and boost

the design closure process in modern toolflows [4–7, 9–13]. For
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example, various of machine learning (ML) techniques have been

used to automatically configure the tool configurations of indus-

trial FPGA toolflow [6, 9, 10, 14, 15] and ASIC toolflow [4, 5, 7, 12].

These works focus on end-to-end tool parameter space exploration,

which are guided by ML models trained based on either offline [7]

or online datasets [6, 9]. Moreover, exploring the sequence of syn-

thesis transformations (also called synthesis flow) in EDA has been

studied in an iterative training-exploration fashion through Convo-

lutional Neural Networks (CNNs) [4] and reinforcement learning

[5]. While the design quality is very sensitive to the sequence of

transformations [4], these approaches are able to learn a sequential

decisionmaking strategy to achieve better quality of results [4, 5]. In

addition, neural network based image classification and image con-

struction techniques have been leveraged in placement and route

(PnR), in order to accelerate design closure in the physical design

stage [16–22]. While ML-based approaches have shown promising

results in different EDA stages, such systems have limited practical

applications. The major limitations include:

• Lacking theoretical guarantees.WhileML-based approaches

could generate promising results, there is no theoretical guar-

antees in exploration bound and failure prediction.

• Lacking domain knowledge of synthesis algorithms.
Leveraging domain knowledge of the implemented algo-

rithms leads to better initialization and final convergence.

However, they are considered as black-box implementations

in existing work [4, 5, 9, 10].

• Lacking flexibility. Once the ML-model have been con-

structed, such exploration systems stuck with a given space

(because input features are fixed) and are limited to specific

QoR objective(s) [4, 5, 9].

• System integration overhead. There is significant run-

time overhead while EDA tools communicate with machine

learning frameworks (e.g., TensorFlow used in [4, 5, 16, 18]).

To overcome these limitations, we propose FlowTune (FTune),
a generic end-to-end, high-performance, and practical domain-

specific multi-armed bandit (MAB) approach for Boolean logic

optimization. FTune is implemented in the synthesis and verifica-

tion framework ABC [1]. Using the interfaces in ABC, FTune has
been integrated with several toolflows, including VTR 8.0 [3], Yosys

[2], Cadence Genus, and Xilinx Vivado. To demonstrate the perfor-

mance, scalability and flexibility, we have applied FTune to various

Boolean logic optimization problems, targetingAnd-Inverter-Graphs
(AIG) [23], STA-timing aware standard-cell (STD) technology map-

ping, FPGA technology mapping, and Conjunction Normal Form
(CNF) for Boolean Satisfiability (SAT) [24]. The main contributions

of this work include:

https://doi.org/10.1145/3400302.3415615
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• A ovel domain-specific bandit algorithm for sequential decision-

making by leveraging domain knowledge of DAG-aware synthesis

algorithms (Section 3).

• FTune is evaluatedwith several integrated circuit (IC) optimization

problems for both FPGAs and ASICs (Section 4) and outperform

ML-based approaches and hand-crafted heuristics.

•Moreover, this is the first work that addresses static timing analysis
(STA) aware technology mapping (using 7nm ASAP [25] library)

and CNF minimization.

• The benefits to the industrial flow are demonstrated by applying

FTune in Vivado flow, where the QoRs are evaluated after PnR.

• FlowTune framework and benchmarks have been fully re-
leased publicly 1.

2 BACKGROUND
2.1 Boolean Logic Optimization
A Boolean circuit can be represented using a directed acyclic graph

(DAG) with nodes representing logic gates and directed edges rep-

resenting wires connecting the gates. The most efficient algorithms

that optimize the Boolean circuit are based DAG-aware Boolean

transformations [1, 2, 23, 26–29], which are implemented based

on And-Inverter-Graphs (AIGs). AIGs are DAGs where each node

represents logic AND function, and the weighted edges indicate

the inversions of the Boolean signals. For example, the synthesis

transformations used in the existing ML-based exploration work

[4, 5] are all DAG-aware synthesis algorithms implemented on

AIGs. A common algorithmic structure of DAG-aware synthesis

algorithms includes two main parts: 1) graph traversing – the DAG-

aware synthesis algorithms first traverse the DAG and search for

the nodes can be optimized by applying certain transformations; 2)

apply transformations – algorithms then apply those transforma-

tions on the transformable nodes and update the DAG (pseudo-code

in Figure 1). A large number of DAG-aware synthesis algorithms

are developed for a variety of optimization objectives.

2.2 Synthesis Flows and Exploration
Synthesis flows are a set of synthesis transformations that apply

iteratively to the Boolean network or circuit design, which are

mostly a combination of DAG-aware synthesis algorithms. The

synthesis transformations are mainly involved in three stages of

the design flow: high-level synthesis (HLS), logic synthesis (LS) and

placement and route (PnR). For different types of electronic designs,

it is well demonstrated that synthesis flows need to be carefully

customized for optimal performance[4, 5, 30]. In this work, we focus

on logic synthesis flows exploration.

Exploration of synthesis flows has been considered as a sequen-

tial decision-making problem, as synthesis flows involve a sequence

of synthesis transformations. Recently, deep learning techniques

have shown promising synthesis flow exploration results compared

to hand-crafted synthesis flows [4, 5]. However, due to the large

search space, expensive labeled data collection, and high system

integration overhead, those approaches are not practical. Moreover,

previous works consider flows with all synthesis transformations

applied same times, i.e., namely m-repetition flows where each

1
https://github.com/Yu-Utah/FlowTune

transformation is applied𝑚 times. Thus, Yu et. al [4] limits the the-

oretical search space of flow exploration to a multi-set permutation

problem. For 𝑚-repetition flows with 𝑛 unique transformations,

the exploration space is

(𝑛 ·𝑚)!
(𝑚!)𝑛 . In this work, we consider a more

general flow space that covers arbitrary types of flows. Specifically,

let 𝑛 be the number of synthesis transformations, the𝑀-repetition

flows,𝑀={𝑚1,𝑚2, ...,𝑚𝑛 }, where𝑚𝑖 is the number of repetitions of

the 𝑖𝑡ℎ (𝑖 <= 𝑛) transformation. The theoretical exploration space

is shown in Equation 1.

𝑆 (𝑀,𝑛) = (𝑚1 +𝑚2 + · · ·𝑚𝑛)!
(𝑚1!) (𝑚2!) · · · (𝑚𝑛!)

(1)

2.3 Technology Mapping
Technology mapping is the problem of implementing a logic circuit

using a set of specific components of a technology library. Mostly,

combinational logic components and memory components are used

to implement the sequential circuits. A standard-cell library would

typically consist of gates of varying gate sizes for primitive logic

functions, where the area, power, and delay can be very different

for the same functionality. For FPGA technology mapping, the

logic circuit will be mapped into a 𝐾-LUT (LookUp-Table) network

where 𝐾 is fixed by the target FPGA device using a LUT library.

The challenge is to construct a mapping that maximally utilizes the

gates in the library to implement the logic function of the circuit

and achieve some performance goal, e.g., minimizing critical path

delay. Note that most of the technology mapping algorithms focus

on optimizing the delay and area using static technology models,

and do not consider the sizes of the gates (i.e., gate sizing). However,

the QoRs after gate sizing with statistical timing analysis (STA) can

be dramatically changed. Hence, in this work, for ASIC flow, we

evaluate our framework using post-STA QoR with gate sizing; for

FPGA flow, we focus on minimizing the number of LUTs.

2.4 Boolean SAT and CNF
In Boolean logic, a formula is in conjunctive normal form (CNF),

which is a conjunction of one or more clauses, where a clause is a

disjunction of literals. In other words, CNF is formed with a logic

AND of many logic ORs. All conjunctions of literals and all disjunc-

tions of literals are in CNF, as they can be seen as conjunctions of

one-literal clauses and conjunctions of a single clause, respectively.

Boolean SAT problem is the problem of determining if there ex-

ists an interpretation that satisfies a given Boolean formula, where

the formula is in CNF format. SAT is the first problem that was

proven to be NP-complete. Current state-of-the-art SAT solvers

use conflict-driven clause learning (CDCL) algorithm for solving

the SAT problems, where the number of clauses in the CNF is an

important factor in the performance. While CNF is a conjunction

(AND) of disjunctions (OR) of literals (Boolean signals), the number

of clauses can be minimized using logic synthesis flows as well.

Hence, in this work, we leverage our framework into CNF mini-

mization for model checking.

https://github.com/Yu-Utah/FlowTune
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1: procedure dag-aware synthesis( )
2: 𝐺 (V, E) ← circuit

3: for 𝑣 ∈ V do
if transformable(𝑣) then

apply transformation to 𝑣
4: update𝐺 (V, E)

end
end

5: end procedure 1 2 3 4 5 6
Synthesis transformation
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Figure 1: Illustration of DAG-aware synthesis algorithm.
And, the relative number of AIG nodes that are effectively
executed in each transformation of the synthesis flows, us-
ing 100 randomflowswith six transformations used in [4, 5].

3 APPROACH
3.1 Algorithmic Domain Knowledge of

DAG-Aware Synthesis
The most efficient algorithms that optimize the Boolean networks

are directed acyclic graph (DAG) aware based Boolean synthesis

algorithms [2, 23], which are widely used in both open-source tools

[2? , 3] and industrial tools [26, 27, 31, 32]. Specifically, this work fo-
cuses on optimizing the synthesis flows that comprise DAG-aware

synthesis algorithms and heuristics. Thus, to understand how effec-

tive each synthesis transformation (algorithm) is in the synthesis

flows, we analyze the basic graph operations in DAG-aware algo-

rithms. We can see that the number of actual transformed nodes

(bracket 4 in pseudo-code Algorithm 1) represents the effectiveness

of the algorithm for a given DAG (a circuit). Hence, to understand

how effective each synthesis transformation (algorithm) is in the

synthesis flows, we monitor the number of transformed nodes of

all transformations using 100 random flows. The selected ABC

synthesis transformations are the same as [4, 5].

The analysis results are shown in Figure 1, where the y-axis

represents the relative number of transformed nodes of each trans-

formation, and the x-axis shows the steps of the synthesis flows.

For example, given a random flow with six transformations, assume

the first transformation is applied to ∼1,000 nodes in the original

graph and the second transformation is applied to ∼200 nodes in
the updated graph. In which case, the relative percentage of the first

two transformations of this example is denoted as 1 and 0.2. There-

fore, in Figure 1, the relative number of transformed nodes of all

randoms flows start with 1. While there are 100 random permuted

flows are used in this analysis, the errorbars are used to indicate

the upper/lower bound.

There are two main observations from this analysis:

• 1) Given a random permuted synthesis flow using DAG-

aware transformations, only the first and the second trans-

formations can effectively optimize the logic network.

In Figure 1, we can see that for any random flow, the third to

sixth transformations in the flow are applied to less than 10% nodes

compared to the first transformation. In this particular example, we

observe many cases that the fifth and sixth transformations do not

detect any transformable node, regardless of the permutations.

Table 1: Example of the algorithmic domain knowledge
presented in Figure 1 using ABC synthesis transformation
rewrite (rw) and balance (b) with design bfly from VTR
8.0 [3] benchmark. Note that rw is technology-independent
rewriting of the AIG which offers the main AIG reductions
in 𝐹0 and 𝐹1. #TNodes = Number of AIG nodes transformed
by the corresponding AIG transformation.

𝐹0 b rw b rw b rw Final #AIG

#TNodes 817 951 825 169 831 64 26339

𝐹1 rw b rw b rw b Final #AIG

#TNodes 1764 824 290 834 90 832 26182

• 2) The optimization performance of synthesis flow is domi-

nated by the first transformation since the first transforma-

tion dominates the transformable nodes for the rest flow.

In other words, picking an ineffective transformation as the first

one in a synthesis flow will likely result in bad QoR regardless of

the permutation of the rest flow. This is analogous to solving a non-

convex optimization problem with an initialization that always

converges at a bad local optimum. The main reason is that the

DAG-aware synthesis algorithms are mostly implemented based

on structural search. The performance of such algorithms heavily

relies on the structure of a given DAG. As indicated in the first

observation, the structure of the graph will be dominated by the

first transformation. Thus, we can say that the first transformation

in the flow dominates the performance of synthesis flows. These

two observations are the main motivations leading to the proposed

domain-knowledge MAB approach.

Example 1: An illustrative example that demonstrates the impor-

tance of the extracted algorithmic domain knowledge presented in

Figure 1 is shown in Table 1. Two DAG-aware synthesis transforma-

tions from ABC are selected to build two different flows 𝐹0 and 𝐹1
and are applied to design bfly from VTR [3] benchmark. We focus

on comparing the transformed AIG nodes (#TNodes) of rewrite
and the final number of AIG nodes. This is because rewrite per-
forms a technology-independent rewriting algorithm of AIG, which

offers the main reductions of #AIG in this example. We can see

that (1) The transformations at the early stage of the flows have more
impacts than the transformations at the late stage. For example, in

both flows, first rewrite successfully applies to more than 7× #AIG
than the second rewrite. (2) The choice of early transformations
has significant impacts on the performance of the flow. While early

transformations have more impacts in the Boolean network, the

DAG structure could change dramatically at the early stage com-

pared to the late stage. For example, while apply balance first,

first rewrite in 𝐹0 applies to 951 nodes. However, without without
balance, rewrite observes 1764 nodes that can be rewritten (𝐹1).

Similar results can be observed from the remaining two rewrite.

3.2 Domain-specific MAB Formulation
In a multi-armed bandit problem, an online algorithm must choose

from a set of strategies in a sequence of𝑛 trials to maximize the total

payoff of the chosen strategies. Such problems assume that a fixed

limited set of resources must be allocated between available choices

in a way that maximizes their expected gain of a given objective.
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These problems are the principal theoretical tool for modeling the

exploration-exploitation tradeoffs inherent in sequential decision

making under uncertainty. Multi-armed bandit can be described as

a tuple of <A,R,>, where:

• A is a known set of available choices (arms).
• At each time step 𝑡 , an action 𝑎𝑡 is triggered by choosing with
one of the choice 𝑎𝑡 ∈ A.
• R is a reward function and R𝑎𝑡 is the reward at time step 𝑡
with action 𝑎𝑡 .
• The objective of bandit algorithm is to maximize

∑𝑡
𝑖 R𝑎𝑡

In a classic MAB sequential decision-making environment, the

available decisions at time step 𝑡 are considered as arms. For exam-

ple, considering the synthesis flow exploration problem, the selected

synthesis transformations will be the set of arms A. Let A include

eight unique transformations A={𝑟𝑒𝑠𝑦𝑛, 𝑟𝑒𝑤𝑟𝑖𝑡𝑒, ..., 𝑟𝑒 𝑓 𝑎𝑐𝑡𝑜𝑟 }. Let

R be the number of AIG nodes that have been reduced by applying

the transformations, such that the objective of the bandit algorithm

is to maximize

∑𝑡
𝑖 R𝑎𝑡 , i.e., minimize the number of AIG nodes.

Let 𝐹 be a decision sequence, where 𝐹={𝑎0, 𝑎1, ..., 𝑎𝑛 }, 𝑎𝑡 ∈ A. This

decision sequence 𝐹 is a synthesis flow. A brute-force approach to

maximize the reward for finding the best flow 𝐹 is playing with

each transformation (each arm) with enough rounds so as to even-

tually get the true probability of reward, which is not practical.

The main idea behind the bandit algorithm is gathering enough

information to make the best overall decisions. During exploitation,

the best-known option is taken according to previous plays. Un-

known options within the search space will be explored with the

exploration phase to gather additional information to close the gap

between estimated probability and the true probability of reward

function. This procedure is similar to the reinforcement learning

approach for synthesis flow exploration without using internal

states. Although the classic MAB sequential decision making has

been widely applied in many applications, it has several significant

drawbacks in logic synthesis flow exploration according to the two

observations in Section 2.1:

• Since the first synthesis transformation dominates the flow,

the first action in exploration will dominate the true reward

distribution R∗ and the exploitation reward distribution R.
In other words, the initialization of the bandit algorithm

dominates the gap between R∗ and R.
• While considering each transformation as an arm, each ac-

tion corresponds to applying one synthesis transformation

to the logic graph. Unlike the classic MAB problem that R∗
is fixed over time, R∗ in synthesis flow exploration changes

at each time step since the logic graph will be updated by

the transformation.

In order to gathering the domain knowledge of synthesis al-

gorithms discussed in Section 2.1, we propose a novel MAB en-

vironment by re-defining the arms and actions. Thus, let P(X)
a random permutation function over a set of decisions X. Let
P(𝑥 ∥X) be a random permutation function over the set X, 𝑥 ∈ X,
such that P(𝑥𝑖 ∥X) is a random permutation with 𝑥𝑖 always be-

ing the first element in the permutation, P(𝑥𝑖 ∥X) ∈ P(X). We

define that P(𝑥 ∥X) be the arms in the MAB environment, such that

A={ P(𝑥0∥X), P(𝑥1∥X), ..., P(𝑥𝑛 ∥X) }, where 𝑛 is the number of

available decisions in the exploration problem. Specifically, 𝑛 corre-

sponds to the number of available synthesis transformations. Un-
like using traditional MAB algorithms, an action 𝑎𝑡 at time
𝑡 is a sampled permutation from P(𝑥𝑖 ∥X). In other words, 𝑎𝑡 is

a multiset over set X. Let𝑄 (𝑎𝑡 ) be the action value that is obtained

by applying 𝑎𝑡 to the given logic circuit at 𝑡 time step, the reward

is 𝑟𝑡

𝑟𝑡 = 𝑄 (𝑎𝑡 ) −𝑄 (𝑎𝑡−1) =⇒ 𝑄 (P(𝑥𝑖 ∥X)) −𝑄 (P(𝑥 𝑗 ∥X))

where the 𝑖𝑡ℎ arm is played at 𝑡 time step and 𝑗𝑡ℎ arm is played

at 𝑡 − 1 time step. Finally, we use upper confidence bound (UCB)

bandit algorithm as the agent, such that 𝑎𝑡 is chosen with estimated

upper bound𝑈𝑡 (𝑎). The upper bound in this work is shown below.

𝑎𝑡 = argmax

𝑎∈A
𝑄 (𝑎) +𝑈𝑡 (𝑎),𝑈𝑡 (𝑎) =

√
𝑙𝑜𝑔 𝑡

2𝑁𝑡 (𝑎)

The performance of a multi-armed bandit algorithm is often

evaluated in terms of its regret, defined as the gap between the

expected payoff of the algorithm and that of an optimal strategy. In

this work, the number of regrets equals to the number of synthesis

flows that have been evaluated in the synthesis tool. Using the

UCB algorithm, an asymptotic logarithmic total regret 𝐿𝑡 will be

achieved

lim

𝑡→∞
𝐿𝑡 = 2𝑙𝑜𝑔 𝑡

∑
Δ𝑎

where Δ𝑎 is the differences between arms in A.

3.3 Multi-stage Bandit
While the approach described in the previous section focuses on

optimistic initialization, we propose a multi-stage bandit to improve

the convergence further. Based on the formulation in the last sec-

tion, we can see that the single-stage approach can be applied to

longer synthesis flows, with each transformation being repeated

multiple times. However, while increasing the length of the se-

quences, a more significant number of explorations are required

to close the gap between the optimistic reward distribution R∗
and exploitation reward distribution R. Moreover, the optimistic

reward distribution R∗ will change once the synthesis transfor-

mations are applied to the logic circuit since the graph structure

has been changed. Finally, although the synthesis transformations

are less effective at late time steps, a fine-grain exploration can
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Figure 2: Illustration of the proposed multi-stage bandit ap-
proach with four stages.
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potentially be very impactful to later stages in the EDA flows, such

as technology mapping and gate sizing.

We present our multi-stage bandit approach using a four-stage

example shown in Figure 2. Each stage in the multi-stage approach

uses the same domain-specific bandit algorithm described in Sec-

tion 3.2. Within each stage, the MAB algorithm is restricted to a

fixed number of iterations𝑚. Once the first stage is completed, ex-

ploitation reward distribution R1 will be updated (stage 1 in Figure

2), where a higher rate indicates the higher chance gaining reward

by playing that arm. The best-explored synthesis flow after𝑚 itera-

tions in the first stage will be applied to the input logic circuit, and

the synthesized circuit will be the input circuit for the next stage.

Instead of initializing a new MAB agent with uniform distribution,

we initialize the second stage using the reward distribution of the

top two arms in the first stage. For example, in Figure 2, R1𝑎0 and
R1𝑎1 will be merged and used as the initial reward distribution for

the second stage, where R1𝑎0 ,R
1

𝑎1
∈ R1. This procedure will con-

tinue until the 𝑠 stages have been completed. As we can see, the

total number of explorations is 𝑠 ·𝑚. In this work, we have explored

five different options for (𝑠,𝑚), while maintaining the total number

of iterations identical.

Example 2: We present an illustrative example of aforementioned

domain-specific MAB and the muilti-stage bandit algorithm for

exploring synthesis flows using ABC transformations rw, b, rf,
and resub. Let X be {4×rw, 4×b, 4×rf, 4×resub}. Let the num-

ber of stages for exploration be four, such that X0,1,2,3 ={rw, b,
rf, resub}. At first MAB stage, arms A0

A0 = {P(𝑟𝑤 ∥X0), P(𝑟 𝑓 ∥X0), ..., P(𝑟𝑒𝑠𝑢𝑏∥X0) } (2)

will be explored with our MAB algorithm presented in Section 3.2.

The reward 𝑟𝑡 is calculated based on the targeting objective, e.g.,

number of AIG nodes newly reduced compared to existing best

actions. Stage 1 will terminate after a fixed number of iterations,

and returns the arm(s) with highest reward value. In this example,

we only include the arm with highest reward for stage 2. Assume

P(𝑟𝑤 ∥X0) and P(𝑟 𝑓 ∥X0) returns the highest reward at stage 1, we

define A∗
0
= {P(𝑟𝑤 ∥X0), P(𝑟 𝑓 ∥X0)}, the arms for second stage,

A1, will be updated as follows:

A1 = {A∗0 ⌢ P((𝑟𝑤)∥X1), ...,A∗0 ⌢ P((𝑟𝑒𝑠𝑢𝑏)∥X1) } (3)

where the sample from each arm in A1 will be a concatenation

of two actions from A∗
0
and P. For stage 3, we simply replace A∗

0

with A∗
1
, which will be the highest reward arms from A1. Note

that the subsets X0,1,2,3 are not necessary to be equally defined. For

example, we can define X0= {2×rw,b,rf,resub}, X1,2 ={rw, b,
rf, resub}, and X3={b,rf,resub}.

3.4 Initialization
The initialization (warm-up) step is crucial for MAB-based explo-

ration performance. We leverage the domain knowledge of DAG-

aware synthesis algorithms in our initialization stage. Specifically,

for our multi-stage MAB exploration approach, we initialize the

reward value for each arm in the first stage using the total number

of transformable nodes by sampling each arm. While as demon-

strated in Example 1, the total number of transformable nodes for

a sequence of transformations highly depends on the first transfor-

mation, the initialization involves only one sampling of each arm.

*.v, *.blif, *.aig
w STD-cell Liberty

*.v, *.blif, *.aig
w FPGA Library

Boolean Network
*.v,*.blif,*.aig,*.cnf

AIG

FlowTune (ftune)

ASIC QoRs § 3.2

Cadence Genus

FPGA QoRs § 3.2

VTR 8.0 Vivado

Conjunction Normal Form 
(CNF)  Minimization

§ 3.2

ABC Mapper Yosys Mapper

Technology Mapping

AIG Minimization
§ 3.3

ABC

Figure 3: Overview of the proposed end-to-end MAB syn-
thesis system – Using ABC front-end, our system accepts
technology mapped netlist, Boolean logic netlist, and LUT-
netlist. The system is also integratedwithVTR8.0 andYosys,
which enable synthesis optimization for a large range of ob-
jectives for designing ASICs and FPGAs, and formal verifi-
cation tools.

More importantly, this scheme significantly reduces the runtime

of initialization for objectives such as technology mapping, since

counting the number of transformable nodes does not require the

actual mapping process. The initialization process is used at the

beginning of each stage. To further improve the speed of initial-

ization, we implement a parallel sampling function using OpenMP

library [33].

3.5 System Integration
The proposed approach, namely FTune, is implemented in ABC.

Using the I/O interfaces of ABC, FTune can be applied to logic

networks in various formats such as Verilog, AIG, and BLIF. The

system overview is shown in Figure 3. Moreover, FTune has been

integrated with ABC two technology mappers, i.e., ’map’ for STD

mapping, and ’if’ for FPGA mapping. For evaluating FTune, the
timing and area results of optimizing STD mapping, the mapped

Verilog produced by ABC are evaluated using Cadence Genus with

ASAP 7nm liberty. The size of CNF formulations is important for

the runtime performance of Boolean SAT solving, which has been

widely applied in verification [24, 34], security [35, 36] and rea-

soning [37]. Regarding FTune for CNF clauses minimization, we

use write_cnf function in ABC that dumps AIGs into CNF format.

Finally, using the ABC interface built-in Yosys to generate mapped

LUT-netlist, we evaluate FTune in Xilinx Vivado targeting Kintex

UltraScale device.

4 RESULT
We demonstrate the proposed approach using eight DSP designs

obtained from VTR 8.0 [3]. The experimental results are obtained

using a CentOS 7 machine with a 48-core Intel Xeon operating

at 2.1 GHz, 8 TB RAM, and 2 TB SSD. The results are collected

with various Boolean logic optimization objectives, including logic

minimization (Section 4.1), STD technology mapping optimization
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Figure 4: FTune in AIG minimization (minimizing the number of AIG nodes). Best-base is the best baseline result obtained
from hand-crafted scripts and ML-based approaches [4, 5]; 𝑠:𝑚 (e.g., 2:30) shows the # stages verses # iterations per stage.
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Figure 5: FTune in LUT minimization for FPGA technology (6-in LUT devices). Best-base is the best baseline result obtained
from hand-crafted scripts and ML-based approaches [4, 5]; 𝑠:𝑚 (e.g., 2:30) shows the # stages verses # iterations per stage.

(Section 4.2), CNF (clauses) minimization (Section 4.3), and post-

route evaluation in Xilinx Vivado (Section 4.4).

4.1 Evaluation of Logic Minimization
Objectives for FTune: a) minimizing the number of AIG nodes

(Figure 4); and b) minimizing the number of 6-in LUTs for FPGA

Table 2: Details of selected VTR benchmarks for evaluating
FTune. The designs are converted into BLIF format using
VTR flow.

Design I/O AIG Latch Level
bfly 482/257 28910 1748 97

dscg 418/257 28252 1618 92

fir 450/225 27704 1882 94

ode 275/169 16069 1316 98

or1200 588/509 12833 670 148

syn2 450/321 30003 1512 93

technology mapping (Figure 5). The benchmarks are listed in Table

2. Baselines: Baseline results are collected using the hand-crafted

scripted in ABC, and results produced using ML-based approaches

proposed in [4, 5]. Specifically, for the hand-crafted baseline,
we applied hand-crafted flow resyn 25 times on all designs.
In Figures 4 and 5, Best-base is the best of these three baselines.

FTune setups: As proposed in Section 3, we can configure FTune
by changing the number of stages 𝑠 , and the number of iteration

𝑚 of each stage. Here, we evaluate five options of 𝑠:𝑚, including

2:30, 3:20, 4:15, 5:12, 6:10, such that the total number of

iterations are identical (i.e., 𝑠 ·𝑚).

AIG minimization results are shown in Figure 4 and LUT mini-

mization minimization results are shown in Figure 5. We can see

that, given the designs that ABC has larger design spaces, i.e., more

design optimization potentials, FTune offers more optimizations

over all the baselines. Another observation is that FTune outper-

forms baseline at early iterations for LUT minimization. This is

because the DAG-aware synthesis algorithms are not developed

to be LUT-mapping aware. Most of the algorithms implemented
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Figure 6: FTune in STA delay optimization w gate sizing. QoR results are obtained using Genus with ASAP 7nm library.

in ABC target minimizing the AIG nodes or the number of levels

of AIG. More importantly, compared to the ML-based approaches

[4, 5], for the same amount of exploration iterations, FTune is ∼100
- 150× faster (runtime vary on design size), and also significantly

outperforms these approach in the QoR performance.

4.2 STD Technology Mapping
Objectives for FTune: Optimize technology mapping QoRs eval-

uated using Cadence Genus with gate sizing, using ASAP 7nm

library, targeting a) STA delay optimization (Figure 6); and b) area
optimization (Figure 7). QoR results are collected with Genus by

importing the Verilog generated by write_verilog command in

ABC. To the best of our knowledge, this is the first work that ad-

dresses synthesis flow tuning for STA-aware technology mapping.

We can see that FTune effectively explores the design space by find-

ing better synthesis flows for both area and STA-delay optimization.

However, FTune is not able to find any better synthesis flow after

the initialization for design or1200. This is similar as shown in

Figures 4 and 5. We believe the ABC synthesis flow design space of

or1200 is very limited for STD technology mapping.

Unlike AIG and LUT mapping minimization where FTune setup

(𝑠 :𝑚 = 2:30) performs consistently better than others, we are not

able to conclude a setup that likely will perform better than others

for STD delay optimization. However, for STD area minimization,

we observe the same results as for AIG and LUT minimization

since STD area closely correlates to AIG minimization. While these

observations offer some intuition for configuring FTune for different

optimization objectives, we cannot provide formal explainability at

this moment.

4.3 CNF Simplification
Objective for FTune: Minimize the number of clauses in the CNF

formula generated for Bounded Model Checking (BMC) with five

time frames (Figure 8). Baseline: We compare FTune to the BMC

simplification technique implemented in ABC, namely dframes.
The results in Figure 8 are generated using 3:20 setup for FTune.

For the given four BMC instances, we can see that FTune reduces

averagely 21% in terms of clauses.

4.4 Case study in Vivado Flow
Finally, we evaluate FTune in an end-to-end industrial FPGA de-

sign flow (Figure 9). The input designs are two simple pipelined

matrix multiplier designs generated using Vivado HLS. The base-

line results are generated by running a complete design flow, i.e.,

Vivado HLS→ Vivado. FTune results are generated as follows: 1)

import Verilog generated by Vivado HLS into Yosys; 2) use the

ABC interface in Yosys to call FTune for flow exploration; 3) pro-

duce Verilog using Yosys; 4) load Yosys Verilog and execute the

rest of design flow using Vivado. In this integrated flow, the iter-

ative FTune optimization process does not use information from

PnR such that the runtime overhead is marginal compared to the

original Vivado flow (major runtime comes from PnR). Note that
we aim to show that FTune can benefit Vivado, not proving
that FTune can outperform Vivado. Specifically, all the results
in Figure 9 are generated without using any Xilinx IP (i.e., designs

are implemented using LUTs only). There are two observations:

First, we can see that FTune can improve ∼14% post-PnR delay of

both designs compared to stand-alone Vivado flow. Second, an in-

teresting observation is that the delay distributions are significantly

changed. As the technologies and FPGA architectures advance, the

timing of post-PnR FPGA design is now dominated by routing delay.

While using Vivado stand-alone flow, we can see that the routing

delay dominates (right figures in Figure 9). However, we observe a

significant delay distribution (logic delay vs. routing delay) changes

that by using FTune (with ABC FPGA mapper), i.e., logic delay and

routing delay are almost equivalently distributed. One possible rea-

son is that Vivado synthesis flow has features that are PnR aware,

which intends to reduce routing delay for large-scale complex FPGA

designs. In contrast, the FTune setup in this case study only focuses

on Boolean logic optimizations.
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Figure 7: FTune in area optimization using w gate sizing. QoR results are obtained using Genus with ASAP 7nm library.
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Figure 9: FTune case studies in Vivado using two pipelined
matrix multipliers generated by Vivado HLS compiler. Tim-
ing results are collected at the post-PnR stage including
logic delay and routing delay, where we observe that FTune
improves the timing of both design about ∼14%.

5 CONCLUSION
This paper presents a generic end-to-end and high-performance

domain-specific, multi-stage multi-armed bandit framework for

Boolean logic optimization. Specifically, we propose a first-of-its-

kind synthesis flow exploration algorithm based on MAB that uti-

lizes domain-specific knowledge of DAG-aware synthesis algo-

rithms. A comprehensive analysis of the DAG-aware algorithms

in synthesis flows is provided to demonstrate the importance of

the extracted domain knowledge. Moreover, we propose a novel

MAB mechanism, including a fast initialization and multi-stage

MAB exploration approach. To demonstrate the performance and

the flexibility of our framework, we build a complete exploration

framework that integrates with several tools. Our results on AIG

minimization, LUT minimization, CNF minimization, post static

timing analysis (STA) delay and area optimization for standard-cell

technology mapping, have demonstrated that FTune outperforms

the existing works in both optimization performance and runtime.

Future work will focus on explainability and robustness analysis of

ML-based design space exploration.
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