Verilog-to-PyG — A Framework for Graph Learning and
Augmentation on RTL Designs

Yingjie Li', Mingju Liu', Alan Mishchenko?, Cunxi Yu!
"University of Maryland, College Park
2UC Berkeley

Abstract—The complexity of modern hardware designs necessitates
advanced methodologies for optimizing and analyzing modern digital
systems. In recent times, machine learning (ML) methodologies have
emerged as potent instruments for assessing design quality-of-results at
the Register-Transfer Level (RTL) or Boolean level, aiming to expedite
design exploration of advanced RTL configurations. In this presentation,
we introduce an innovative open-source framework that translates
RTL designs into graph representation foundations, which can be
seamlessly integrated with the PyTorch Geometric graph learning platform.
Furthermore, the Verilog-to-PyG (V2PYG) framework is compatible
with the open-source Electronic Design Automation (EDA) toolchain
OpenROAD, facilitating the collection of labeled datasets in an utterly
open-source manner. Additionally, we will present novel RTL data
augmentation methods (incorporated in our framework) that enable
functional equivalent design augmentation for the construction of an
extensive graph-based RTL design database. Lastly, we will showcase
several using cases of V2PYG with detailed scripting examples. V2PYG
can be found at https://yu-maryland.github.io/Verilog-to-PyG/.

I. INTRODUCTION

The increasing complexity of electronic systems has driven signifi-
cant advancements in hardware design. Modern hardware designs
encompass a wide range of components, from Register Transfer
Level (RTL) descriptions to logic circuits. As the complexity grows,
conventional design algorithms can suffer from their exponentially
increased runtime overhead, resulting in sub-optimal solutions as
the optimization search space is too large to be explored. Thus, an
effective optimization and analysis technique becomes more critical.

Recently, machine learning (ML), which features with its data-driven
generalizability, has been applied to computer systems and electronic
design automation (EDA) tasks [11], [20], [25], [35], [40], [42], [43]
as an alternative to conventional solutions. As shown in Figure 1, the
optimization target in each design flow can be converted to a specific
ML task. For example, for the high-level synthesis, the optimization
target is the Data Flow Graphs (DFGs) [28], [32], [36], [38], [39],
which can be formulated as graph learning problems. Similarly, for
logic synthesis, the optimization target, Boolean Networks (BNs), can
be formulated as graphs and applicable to graph learning. As a result,
graph neural networks (GNNs) have been applied to classifying sub-
circuit functionality from gate-level netlists [3], [30], [34], analyzing
the impacts of logic rewriting [44], predicting arithmetic block
boundaries [14], and improving design exploration fidelity [28].

Specifically, graph learning, particularly graph neural networks
(GNN?§), has emerged as a powerful method for understanding complex
relationships in various domains, including social networks, biological
systems, and natural language processing. In the context of hardware
design, graph learning can be employed to model and analyze the
intricate connections among design components, such as gates, wires,
and registers, to optimize design performance and effectively analyze
design characteristics. Furthermore, the embedding and features
encoded within the graph, i.e., the dataset for GNNS, play a vital role
in the GL performance regarding the hardware design [34].

Feature Type Design Flows

Text (NL) <«=--- RTL Argumentation

| Verilog |

«—— Data-to-PyG
Coarse Label

Bool-level Label

Pre-PnR Label

Finest Label

Fig. 1: Overview of design features across the design flow. V2PYG
currently focuses on graph data representations of RTL designs at
data-flow and Boolean network level (technology independent and
dependent), including coarse-to-fine data labeling via OpenROAD [2]
and design augmentation at graph-level by incorporating computer
algebra, Boolean algebra [6], and retiming [15].

However, when it comes to applying graph learning to RTL designs,
there is a notable gap in support for dataset preparation, specifically
in the graph representations of these designs. Two main challenges
exist: 1) The absence of a comprehensive infrastructure that links
RTL designs to graph representations, aids in the construction of
graph datasets, and integrates seamlessly with existing graph learning
and EDA frameworks such as PyTorch Geometric (PyG) [13] and
OpenROAD [1]. 2) A limited range of design variations available
for training and constrained search spaces for foundational RTL
models, which necessitates the development of effective RTL design
augmentation techniques. To tackle these challenges, we introduce
an open-source infrastructure that is compatible with PyG [13]
and enriches the pool of RTL design samples through functionally
equivalent RTL augmentations.

In this paper, we focus on the graph data representations of RTL
designs at the Boolean network level, as highlighted in the green
box of Figure 1. The paper is organized as follows: Section II
offers background information pertinent to graph-represented RTL
designs. Section III presents our framework, including design-specific
graph generation (Section III-B) and Section IV-A illustrates dataset
augmentations for a variety of graph structures that retain the same
design function. Finally, we discuss the implementation of our
framework (Section V-A) in ABC [6], [23], complemented by detailed
user examples (Section V-B) and demonstrations of equivalence
checking verification.


https://yu-maryland.github.io/Verilog-to-PyG/

II. BACKGROUND
A. Graph Learning on RTL Designs

Since BNs and circuit netlists are naturally represented as graphs,
GNNs can be leveraged to classify sub-circuit functionality from gate-
level netlists [3], predict the functionality of approximate circuits [7],
analyze impacts of circuit rewriting on functional operator detec-
tion [44], and predict boundaries of arithmetic blocks [14], [29], [30],
[34]. Promising as they are, these approaches focus on graphs with
tens of thousands of nodes and conduct training on complex designs
and inference on relatively simpler ones, in which the generalization
capability from simple to complex designs is not well examined. To
address such challenges in learning on logic graphs, representing
logic graph using universal representations have shown significant
improvements in generalizability and scalability. For example, the uses
of And-Inv-Graph (AIGs) has significantly boosted the performance
and generaliability in contrastive graph learning [16], [26], [29], [44],
node classification based tasks, and reasoning [34]. Moreover, in
DFGs or similar graph representations, GNNs have also shown great
potential in datapath optimization, compiler optimization, and multi-
fidelity optimization such as placement and floorplanning [17], [18],
[19], [28], [32], [33].

Moreover, GNNs operate by propagating information along the
edges of a given graph. Each node is initialized with a representation,
which could be either a direct representation or a learnable embedding
obtained from node features. Then, a GNN layer updates each node
representation by integrating node representations of both itself and its
neighbors in the graph. The propagation along edges extracts structural
information from graphs, corresponding to structural shape hashing
in conventional reasoning; after encoding Boolean functionality into
node features, neighborhood aggregation is analogous to functional
aggregation in conventional reasoning. Thus, the inherent message-
passing mechanism in GNNs enables simultaneous handling of
structural and functional information. This is analogous to conventional
reasoning [29], [34], where GNNs aggregate functional and structural
approaches simultaneously.

B. DAG-aware Logic Synthesis

When applying graph learning to hardware designs, the dataset
is prepared to include various graph structures even with the same
functionality, which requires the framework to be able to provide
graph augmentation for the dataset generation. In logic synthesis,
design variations can be generated with different logic optimization
methods and different technology mapping methods.

In logic optimization, which is conducted on the uniform functional-
ity representation (here, we use AIG representation as a demonstration),
there are mainly three methods.

Rewriting, noted as rw, is a fast greedy algorithm for optimizing the
graph size. It iteratively selects the AIG subgraph with the current
node as the root node and replaces the selected subgraph with the
same functional pre-computed subgraph with a smaller (or equal) size
to realize the graph size reduction. Specifically, it finds the 4-feasible
cuts as subgraphs for the node while preserving the number of logic
levels [21]. As shown in Figure 2, the graph structure alters from
Figure 2a to Figure 2b when applied with rw at node k.
Refactoring, noted as r £, is a variation of the AIG rewriting using
a heuristic algorithm [5] to produce a large cut for each AIG node.
Refactoring optimizes AIGs by replacing the current AIG structure
with a factored form of the cut function. It can also optimize the
AIGs with the graph depth. The rf optimization applied at node j
alters the graph structure as shown in Figure 2c.

Resubstitution, noted as rs, optimizes the AIG by replacing the
function of the node with the other existing nodes (divisors)
already present in the graph, which is expected to remove the redundant
node in expressing the function of the current node. The optimized
graph resulting from rs optimization is shown in Figure 2d.

F F

(b) Rewriting

(c) Refactoring (d) Resubstitution

Fig. 2: The graph structure augmentation with different optimization
methods with the same functionality.

Thus, by applying different logic optimization methods to the
same AIG, different AIG structures with the same functionality can
be generated. In our framework, we further expand the variations
by applying different optimizations at each node for combinational
augmentation. For example, for an AIG graph with a node size of N,
the variation space can be O(3V).

With different graph structures with AIG representation, the netlist
variation of hardware design can be realized by technology mapping
from various AIGs with the technology library.

III. V2PYG FRAMEWORK
A. Overview

The framework overview is shown in Figure 3. V2PYG currently
performs Verilog to graph representation at the foundation of Boolean
representations, including technology dependent (technology mapped)
and technology independent representations (Boolean networks such
as And-Inv-Graphs). V2PYG parses Verilog designs using Yosys front-
end and performs downstream design flow via OpenROAD. First, we
represent sequential design as combinational design in a special case.
First, transform the sequential design into an equivalent design using
Boolean network data structure (e.g., AIGs) or technology dependent
networks (exact topology of mapped netlist). Next, model flip-flops



Input (OpenROAD): Graph generation (ABC):
Design description file Return structural edgelist and initial function embeddin

: Label generation (OpenROAD):
: Extract label from any design stage as needed

’

=

—_— —_— _— @ *

@ = = > = "

nted 52 £ T 3 3 o

Graph [LeEul Combinational Netlist g2= c - - o H
. © Ko cC o ] 9] .

Extraction & Sequential ___dataset 253 _ I €5 = 8
I e —— < - ok [T 2 B

(Sec I1.B) AU ' 258 R 5 F
(Sec IV) Augmented X ok = = K

UR dataset & “ 32 2 2 -F

& K] ] = = -

Fig. 3: The overview of V2PYG framework. The input files are pre-processed in Yosys as the front-end in OpenROAD. Our framework
is implemented in ABC including graph extraction and logic optimization based combinational augmentation, which returns the structural
edgelist and initial functional embedding for graph learning. The labels can be extracted from any stage in the downstream OpenROAD

design flow.

as pseudo-primary inputs (PPIs) and pseudo-primary outputs (PPOs),
connecting them through the AIG network to capture state transitions
and dependencies between flip-flops and combinatorial logic. The
graph is then extracted from the network, and the graph dataset is
augmented with combinational methods in logic optimization as shown
in Alg. 1, which will return the structural information of the edgelist
of the graph and the initial functional embedding for graph learning
tasks. Data labels will be generated via OpenROAD [2] downstream
flow. As a result, the sequential design will be represented in semi-
complete multi-DAGs. We also plan to integrate MLIR CIRCT [12]
into the pipeline to process multi-fidelity graph representations (DFGs
w Boolean networks).

B. Verilog to Graph Representation

After the prepossessing by Yosys, the design is described at the
RTL level, where the gates are connected with nets. As shown in
Figure 4, in the Verilog file, gate G1, which is an AND?2 gate, and gate
G,, which is an XOR?2 gate, are connected with net Ni. Thus, we can
extract G| and G, as two nodes, n| and ny, with features indicting
the different gate types. In Figure 4b, the gate type is encoded with
one-hot representation, e.g., [1,0] indicates the gate type is AND2
and [0, 1] indicates the gate type is XOR2 for this design. Net N| is
formulated as the edge between n/ and n2 with the direction from
n to ny indicating the connection between two gates, i.e., following
the topological order, n, is at least one level higher than n;.

Furthermore, in the logic optimization step, the optimizations
are conducted on multi-level technology-independent representations
such as And-Inverter-Graphs (AIGs) [21], [22], [41] and Majority-
Inverter-Graphs (MIGs) [4], [27] of the digital logic, and XOR-rich
representations for emerging technologies such as XOR-And-Graphs
[8] and XOR-Majority-Graphs, which means the gate-level netlist is
first strashed into uniform representations with the same functionality.
For example, to strash the netlist in Figure 4a to AIG, where all gates
functions are implemented with only 2-input AND gates and inverters,
the XOR?2 is strashed into three AND2 gates and five Inverters. Thus,
as shown in Figure 4c, to extract AIGs to graphs, we formulate AND2
gates as nodes, ns — ng, with exact two inputs, and the inverter is
encoded at the input net of the AND2 gate, where the dashed edge
indicates an inverter is applied at the net. The initial node embedding
indicates the inverters at its input edges from left to right with exact
two dimensions with bit representation, where 1 indicates the inverter
at the input and O indicates no inverter at the input. For example, for
node ng, there are inverters at both inputs of the gate. Thus, its initial
node embedding is [1,1], while for node n7, there is only one inverter
at its left input, the initial node embedding is [1,0].

For each graph, the framework will return the edgelist for structure
information and initial node embedding for the functional information,
such as the gate type for the netlist graph and the input inverters for
AlGs.

IV. V2PYG RTL AUGMENTATION

In the realm of hardware design, specifically at the register-
transfer level (RTL), the idea of leveraging machine learning (ML)
techniques to enhance optimization processes has garnered increasing
attention. However, one significant challenge lies in the acquisition
and augmentation of RTL design data to train these ML models
effectively. In traditional domains where ML has shown success, such
as computer vision or natural language processing, data augmentation
techniques—Ilike image rotation, scaling, or text paraphrasing—have
been pivotal in enhancing model robustness and generalization.
Yet, in the context of RTL design, naive data augmentation can
lead to functionally incorrect or non-equivalent designs. Ensuring
functional equivalence is paramount; thus, data augmentation in
this space requires meticulous care and deep domain knowledge,
preventing the straightforward application of techniques that have
been successful in other domains. Consequently, while the potential
of ML to revolutionize RTL optimization is evident, the unique nature
of hardware design data and the stringent requirements for functional
correctness substantially complicate the application of traditional data
augmentation strategies.

A. Combinational Augmentation

The combinational augmentation of RTL designs can be achieved
through V2PYG by applying transformations that maintain com-
binational equivalence, inspired by [9], [10] Specifically, V2PYG
incorporates data flow augmentation using polynomial manipulations,
fine-grained Boolean algebra manipulation (at least at the individual
Boolean node level), and graph isomorphism augmentation. These
augmentation techniques enable the generation of a nearly unlimited
number of functionally equivalent designs at the Boolean level. As
discussed in Section II, applying different logic optimizations to the
same functional AIG can result in various graph structures. However,
stand-alone logic optimizations are limited in graph augmentation.
With three optimizations, i.e., rw, rs, rf, only three variations are
generated for the same original AIG. Thus, we propose combinational
augmentation, where we randomly apply different optimizations at
each AIG node for graph structure alterations. For an original AIG
with a node size of N, the potential graph variations can be at the
scale of O(3"), and the variation space increases exponentially as the
graph size increases.

The algorithm for augmentation with combinational logic optimiza-
tion methods is shown in Alg. 1. It takes the original AIG G(V,E)



ol

module demo (nil,
input il;

input i2;

input i3;

wire nl;

output ol;

i1, i2, i3, ol);

AND2x2_ASAP7_75t_L G1 (
WA (i),
.B (i2),
LY (nl1));
XOR2x1_ASAP7_75t_L G2 (
LA (n1),
.B (i3),
.Y (01));
endmodule

(a) The Verilog described design. embedding indicates its gate type.

(b) The extracted graph with netlist. Node

ng: [1, 1]

ny: [1, 0]

. ne: [0, 1]

(c) The extracted graph with uniform representation AIG. Node
embedding indicates the input inverters to the gate.

Fig. 4: The extracted graph for GL from different design representation levels.

and a random seed as inputs. Following the topological order in the
original graph, it first initializes a list D for recording the available
optimizations, where we hash the optimizations with numbers 0, 1,
2, 3, i.e., 0 indicates none of the optimizations is applied, which is
initialized for all AIG nodes to be considered in the random pool; 1
indicates rw is applicable for logic optimization at the node; 2 indicates
rf is applicable for optimization at the node; 3 indicates rs is applicable
for optimization at the node. Then, for each AIG node, it generates the
list D for random selections by checking the transformability for each
optimization operation from line 3 to line 8. After acquiring the list D
with all available optimizations, it randomly selects the optimization
from D (line 9) and updates the graph accordingly (line 10). Note that
the resulting AIG structures from different optimizations are checked
to be functional equivalence by Combinatorial Equivalence Checking
(CEC).

Input : G(V,E) < Boolean Networks/Circuits in AIG
Input :Random seed for optimization selections
Output : Post-optimized AIG G(V,E)

for v €V in topological order do

2 D=1[0] // List D saves the available
optimization methods at the node.
The length of D can vary.

[

3 if v is transformable w.r.t rw then

4 D.append(l) // rw is available for
optimization.

5 if v is transformable w.r.t rs then

6 D.append(2) // rf is available for
optimization.

7 if v is transformable w.r.t rf then

8 D.append(3) // rs is available for
optimization.

9 int k = rand(0, len(D)) // Randomly select an
optimization from D.

Dlk
10 Update G(V,E) & Dec_GraphUpdateNetwork

with the selected optimization D[], and exclude v and
transformed nodes from V.

11 end
Algorithm 1: Boolean manipulation sampling on AIGs

For example, in Figure 5, the original AIG is shown in Figure
Sa. The algorithm checks the optimization transformability following
the topological order starting from S; as shown in Figure 5a. For
node n— —m, they have no applicable optimizations for selection
and are skipped for optimization. Regarding node p, it poses three

optimizations, and the random selection can result in quite different
graph structures for dataset augmentation. In the first random sample,
the algorithm picks 7w for the optimization at node p and the graph is
updated to Figure 5b thus, node g shows no applicable optimizations.
In the second random sample, the algorithm picks none for the
optimization at node p, resulting in optimization opportunities for
node g. When the algorithm picks rs for the optimization at g, the
graph is updated as shown in Figure 5c. By setting different random
seeds and starting the random sample with a push button implemented
in our framework, the dataset is augmented through combinational
random selections with functional equivalence.

Furthermore, we show the dataset distribution with 6000 samples
in Figure 6 for different designs with Alg. 1. Here, we collect the
distribution w.r.t the graph size of various graph structures, which
is reported by the logic synthesis in OpenROAD as labels. By
combinational dataset augmentation, we can generate large enough
datasets, and with the proposed random selected logic-optimization-
based boolean manipulations on graphs, we can generate Gaussian-like
dataset distributions for effective GL model training efficiently.

B. Sequential Augmentation

V2PYG currently supports sequential augmentation by adjusting
the sequential behaviors using partial random retiming, which offers
significant design variations while preserving sequential equivalence.
It is important to note that combinational augmentation is orthogonal
to sequential augmentation.

In the sequential augmentation, we use the variations in ret iming,
where we first check the feasibility of each edge for buffer insertion
and randomly insert the buffer at the applicable edge, i.e., resulting
in random partitions of the sequential graph. After sequential aug-
mentation, we can further apply combinational augmentation on each
sub-graph resulting from sequential augmentations.

C. Label Generation

In Figure 6, multiple labels can be derived for a specific RTL design.
For example, the quality metrics related to the AIG size, demonstrated
in Figure 6, signify one category of labels formulated during the
logic synthesis stage of ABC. Alongside technology-independent
representation labels, technology-dependent labels at the logic level
are adeptly generated through design infrastructures such as ABC.
Other ABC-compatible platforms like OpenROAD [1], Yosys [31], and
VTR [24] also support this functionality. By harnessing technology
mapping in tools like ABC and Yosys and utilizing methods such as
LUT-mapping (e.g., " i£’ in ABC) or standard-cell mapping (e.g.,
"map’ ), we can generate labels for metrics encompassing the number



Ss: Dy=[0]
Update graph

S4: Dp=10,1,3]
S3: Dy=[0]
Sy Dg=[0]
Sy:Dy=[0]

(a) The original AIG.

tional augmentation.

Random sample: Dy, as rw

(b) The first graph variation with combina-

Update graph

Random sample: Dy as rs F
_______ Ss: D,=[0,2, 3]

Random sample: D, as none

S4: Dp=[0, 1, 3]

S5t Dpp=[0]

Syt Dg=[0]

S1:Dy=[0]

(c) The other graph variation with combina-
tional augmentation.

Fig. 5: The combinational augmentation examples.

0.10

0.0751 —— Random —— Random
>
% 0.050 z
c 2 0.05
9] 8
00.025

0.000 520 540 560 0.00- = s

Node size Node size
(a) bl1 (b) b12

0.101 — Random —
. 0.03 Random
- b
£ =
< 0.05 % 0.02
e S0.01

0.00 .

600 620 640 0.00 1500 1550 1600
Node size Node size 1
(c) c2670 (d) c5315

Fig. 6: The optimization quality distribution with 6000 samples of
purely random sampling and priority guided sampling.

PN

of LUTs, LUT-based netlist depth, and delay and area metrics of the
standard-cell netlist.

Additionally, while V2PYG is inherently integrated with ABC, it
offers potential integration with OpenROAD to acquire downstream
data labels, including those from floorplanning, placement, and routing
stages. Specifically, via the Yosys ABC interface (command abc
in Yosys), V2PYG functionalities can be seamlessly incorporated
into the OpenROAD flow. In this scenario, we can garner custom |,
labels at specific design phases, virtually spanning the complete
design procedure. For instance, each sampled AIG graph can be
channeled to OpenROAD for subsequent design phases like technology
mapping, floorplanning, placement, and routing. Following each stage,
OpenROAD renders a design report, which can be mined to extract
labels, thereby training GNN models tailored for diverse tasks.

V. V2PYG IMPLEMENTATION
A. Implementation

a) Graph Extraction: We have introduced a universal extraction
implementation write_edgelist, which supports the extraction
for AIGs, standard-cell techmap netlist, and LUT-based netlist. More
details of the usage can be found by write_edgelist -hin ABC
and the following user case examples.

b) Logic-level augmentation: This framework has been imple-
mented in ABC [6] with the command aigaug, which conducts logic _
optimization based combinational augmentation of the design with ‘
uniform representations following Alg. 1. Specifically, we implement
five flags in aigaug — (1) ‘—s* takes in the customized random s

seed for the random selections; (2) ‘—d‘ sets the name of the file
recording the random selected and applied optimization operation at
each node; (2) ‘-~z enables the zero usage for rewrite optimization,
where the graph structure is altered even when there is no graph
size reduction by rewrite; (4) ‘-Z‘ enables the zero usage for
refactor optimization, where the graph structure is altered even
when there is no graph size reduction by refactor; (5) ‘~help®
prints out the usage of the command.

B. User Example 1 - Combinational RTL Designs

In this section, we present the toy example that demonstrates a
series of functions associated with V2PYG implemented in ABC
using a 2-bit multiplier. Our starting point is an RTL implementation
of a 2-bit multiplier shown in Listing 1.

module mult2b (a,b,z);
input [1:0] a,b;
output [3:0] z;

assign z = a * b;
endmodule

Listing 1: RTL description of a 2-bit multiplier.

To translate the word-level description of our 2-bit multiplier into
an AIG representation, we employ a sequential procedure within the
ABC tool, as illustrated in Listing 2.

abc 01> %$read mult-2b.v ; S$blast; &put; strash;
print_stats;
> mult2b i/o = 4/ 4 lat = 0 and =
10 lev = 4

abc 02> write mult-2b.blif

Listing 2: Procedure in ABC for transforming the RTL design into
an AIG.

In the above commands, ‘read mult-2b.v ; %blast‘ fa-
cilitates the reading of our multiplier’s Verilog code, subsequently bit-
blasting it to a bit-level representation. The sequence ‘&¢put; strash®
then morphs the design into its AIG avatar. Lastly, the user can
serialize the AIG representation to a BLIF format using ‘write
mult-2b.blif‘. This pedagogical demonstration serves as a
testament to ABC’s prowess in handling and transforming RTL designs,
marking its indelible significance in the RTL design landscape.

./abc
abc 01> read mult-2b.blif

3 abc 02> strash

abc 03> write_edgelist mult-2b.el

WriteEdgelist (Verilog-to-PyG @ https://github.
com/ycunxi/Verilog-to-PyG) starts writing to
mult-2b.el

abc 04> write_edgelist -h



11

12

DSw N

» 28
s 27

usage: write_edgelist [-N] <file>
writes the network into edgelist

file

part of Verilog-2-PyG (PyTorch
Geometric) . more details https://github.com/
ycunxi/Verilog-to-PyG
-N toggle keeping original naming of
the netlist in edgelist (default=False)

-h print the help massage
file the name of the file to write (
extension .el)

Listing 3: Procedure of extracting AIG representation.

9 Pi 00 5 29 24 AIG 00
10 Pi 00 5 30 24 AIG 00
11 Pi 00 710 31 AIG 11
12 Pi 00 s 12 31 AIG 11
59 23 AIG 11 9 29 26 AIG 11
11 23 AIG 11 0 31 26 AIG 11
10 27 AIG 11 2129 32 AIG 00
11 27 AIG 11 » 31 32 AIG 00
9 28 AIG 11 23 26 25 AIG 00
12 28 AIG 11 % 32 25 AIG 00
27 29 AIG 11 5 23 5 Po 00
29 AIG 11 % 24 6 Po 00
30 AIG 00 27 25 7 Po 00
28 30 AIG 00 % 26 8 Po 00
19 Pi o0
# a0
3 11 Pi o0
# bo
9 23 AIG 11
# a0 * bo
11 23 AIG 11
# a0 * bo
23 5 Po 00
#23 =5=mo

1

3 Library "ASAP7_7nm_LVT_FF"

IS

Fig. 7: Visualization of the topological representation and static AIG 3

features w.r.t Listing V-BOa.

b) Gate-level netlist: Next, we will illustrate a case study in

9

succinctly encapsulates the interconnections of the design’s elements,
providing a blueprint of its topology. The format and contents of |,

the edge list for our 2-bit multiplier are showcased in Listing 4,

which can be matched from Figure 8. In addition to the topological

12

13

information (connectivity), the edgelist contains the exact cell entry of '

the technology library. In this example, the cell matches the ASAP7
library, e.g., INVx1_ASAP7_75t_L indicates the functionality of the
cell, the size of the cell, and its library information. Note that we plan
to further expand the functionality of feature extract for technology
mapped cells, such as adding more feature columns for the cell
information, such as capacitor size, rise/fall timing, area, etc.

15

16

17

18

module Multi2 (
a0, al, boO,
m0, ml, m2,
input a0, al,
output m0, ml, m2, m3;
wire new_n9_, new_nlO_,
new_nl5_, new_nlo6_;
INVx1_ASAP7_T75t_L
)) i
INVx1_ASAP7_T75t_L
new_nl0_));

bl,
m3 );
b0, bl;

new_nl2_, new_nl3_,

g0(.A(al0), .Y(new_n9_

gl (.A(b0), .Y(

NOR2xp33_ASAP7_75t_L g2 (.A(new_n9_), .B(
new_nl0_), .Y(m0));

AND4x1_ASAP7_75t_L g3(.A(b0), .B(al), .C
(al), .D(bl), .Y(new_nl2_));

AQOI22xp33_ASAP7_75t_L g4 (.Al(al), .A2(bl),
.Bl(al), .B2(b0), .Y(new_nl3_));

NOR2xp33_ASAP7_75t_L g5(.A(new_nl3_), .B(
new_nl2_), .Y(ml));

INVx1_ASAP7_75t_L g6(.A(al), .Y(
new_nlb5_));

INVx1_ASAP7_75t_L g7 (.A(bl), .Y(
new_nlo6_));

AQOI211xp5_ASAP7_75t_L g8 (.ALl(b0), .A2(al),
.B(new_nl5_), .C(new_nl6_), .Y(m2));

NOR4xp25_ASAP7_75t_L g9 (.A(new_nlb_), .B(
new_n9_), .C(new_nl6_), .D(new_nlO_), .Y (m3))

2
endmodule

Listing 4: Verilog of technology-mapped netlist.

./abc
abc 01> read 7nm_1lvt_ff.1lib
from "7nm_1lvt_ff.1ib"

has 159 cells (26 skipped: 23 seq; 0 tri-
state; 3 no func; 0 dont_use). Time =
0.70 sec

Warning: Detected 2 multi-output gates (for

example, "FAxl ASAP7_T75t_L").
abc 01> read —m mult-2b-mapped.v
abc 02> write_edgelist mult-2b-mapped.el

Listing 5: Procedure in generating edgelist of technology mapped
netlist

9 Pi 00

10 Pi 00

11 Pi 00

12 Pi 00

9 27 INVx1_ASAP7_75t_L

11 28 INVx1_ASAP7_75t_L

27 28 23 NOR2xp33_ASAP7_75t_L

SwWw N

. . . L7 811 9 10 12 29 AND4x1_ASAP7_75t_L
ABC for generating an edge list of the mapped netlist. This list

9 12 10 11 30 AOI22xp33_ASAP7_75t_L
30 29 24 NOR2xp33_ASAP7_75t_L

10 31 INVx1_ASAP7_75t_L

12 32 INVx1_ASAP7_75t_L

11 9 31 32 25 AOI211lxp5_ASAP7_75t_L
31 27 32 28 26 NOR4xp25_ASAP7_T75t_L
23 5 Po 00

24 6 pPo 00

25 7 pPo 00

26 8 Po 00

Listing 6: Edgelist of technology mapped netlist.



m0

ml m2 m3

l 18
AP7_75t_L NOR4xp25_ASAP7_75t_L
—. ,

11
NOR2xp33_ASAP7_75t_L

15 12 13
AOI22xp33_ASAP7_75t_L

10
ASAP7_75t L

9
INVXI_ASAP7_75t_L

b0 a0

Fig. 8: Visualization of the topological representation of technology mapped netlist (ASAP7 library [37] used in this example).

C. Equivalence Verification of Augmented Designs

In the intricate domain of RTL design, demonstrating functional
equivalence in data-augmented designs is paramount. To elucidate this,
consider the scenario executed using the abc tool, renowned for And-
Inverter Graph (AIG) manipulation. Initially, the design 110.aig
is loaded. Post structural hashing (strash), the design encapsulates
257 inputs, 224 outputs, and leverages 2675 AND gates. To perform
data augmentation, a random seed of ‘0° is deployed, birthing the
augmented design 110_aug_0.aig. The statistics of this new
design reveal modifications, notably a decrement in AND gates to
2514, albeit retaining an identical level depth. Mirroring this procedure
but employing a divergent random seed of ‘1‘, we derive another
offspring, the 110_aug_1.aig. The design, now slightly deviant,
holds 1980 AND gates within a level depth of 47. Most crucially,
upon deploying the combinational equivalence checking (cec), results
affirm that the parent 110.aig and its progenies 110_aug_0.aig
and 110_aug_1l.aig are, in essence, functionally equivalent. This
not only underscores the power and precision of such tools but also
the intricate art of RTL data augmentation where functional integrity
remains inviolate.

//load i10.aig design

» abc 01> read il10.aig;strash;print_stats;

3 110

i/o = 257/
lev = 50
//perform augmentation
abc 03> aigaug -s 0 -d

224 lat = 0 and = 2675

using random seed "O"
1i10_aug_0.csv;print_stats

i10: i/o = 257/ 224 lat = 0 and = 2514
lev = 50

abc 03> write i10_aug_0O.aig;

abc 03> read il10.aig;strash;

//perform augmentation using random seed "1"

abc 05> aigaug -s 1 -d i10_aug_l.csv;print_stats

110: i/o = 257/ 224 lat = 0 and = 1980
lev = 47
» abc 05> write i1i10_aug_l.aig;
3 abc 05> cec il10.aig 1i10_aug_0.aig;
Networks are equivalent. Time = 0.19 sec
s abc 05> cec i10.aig i110_aug_l.aig;
Networks are equivalent. Time = 0.24 sec

//combinational equivalence checking returns that
all three designs are equivalent

VI. CONCLUSION

This paper proposes a novel framework V2PYG to address the
growing complexities in modern hardware designs by introducing
advanced methodologies for optimizing and analyzing digital systems.

We have introduced an innovative, open-source framework known
as Verilog-to-PyG (V2PYG) that enables seamless integration with
the PyTorch Geometric graph learning platform [13]. This framework
also offers compatibility with the open-source Electronic Design
Automation (EDA) toolchain OpenROAD, Yosys, and VTR, thereby
facilitating the collection of labeled datasets in a fully open-source
environment. Moreover, we presented novel techniques for RTL data
augmentation that can be incorporated into our framework. These
methods contribute to the development of an extensive database
of graph-based RTL designs validated in equivalence checking
verification.

REFERENCES

[11 T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. Chhabria, D. Choo,
M. Coltella, S. Dobre, R. Dreslinski, M. Fogaca et al., “Openroad:
Toward a self-driving, open-source digital layout implementation tool
chain,” Proc. GOMACTECH, pp. 1105-1110, 2019

T. Ajayi et al., “Toward an open-source digital flow: First learnings from
the openroad project,” in DAC, 2019, pp. 1-4.

L. Alrahis et al., “Gnn-re: Graph neural networks for reverse engineering
of gate-level netlists,” IEEE TCAD, 2021.

L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A new paradigm for logic optimization,” IEEE Transactions on CAD,
vol. 35, no. 5, pp. 806-819, 2015

A. M. R. Brayton, “Scalable logic synthesis using a simple circuit
structure,” in Proc. IWLS, vol. 6, 2006, pp. 15-22.

R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Proc. CAV. Springer, 2010.

T. Bucher et al., “Appgnn: Approximation-aware functional reverse
engineering using graph neural networks,” arXiv:2208.10868, 2022.

C. Calik, M. Sonmez Turan, and R. Peralta, “The multiplicative complex-
ity of 6-variable boolean functions,” Cryptography and Communications,
vol. 11, no. 1, pp. 93-107, 2019

A. B. Chowdhury, L. Alrahis, L. Collini, J. Knechtel, R. Karri,
S. Garg, O. Sinanoglu, and B. Tan, “Almost: Adversarial learning to
mitigate oracle-less ml attacks via synthesis tuning,” arXiv preprint
arXiv:2303.03372, 2023.

A. B. Chowdhury, M. Romanelli, B. Tan, R. Karri, and S. Garg, “Invictus:
Optimizing boolean logic circuit synthesis via synergistic learning and
search,” arXiv preprint arXiv:2305.13164, 2023.

A. B. Chowdhury, B. Tan, R. Carey, T. Jain, R. Karri, and S. Garg, “Bulls-
eye: Active few-shot learning guided logic synthesis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.
C. Developers, “"circt" / circuit ir compilers and tools.
github.com/llvm/circt,” 2019, pp. 1-4.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

Z. He et al., “Graph learning-based arithmetic block identification,” in
Proc. ICCAD, 2021.

C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,”
Algorithmica, vol. 6, no. 1-6, pp. 5-35, 1991.

[2

—

[3

[t

[4

finar

[5]

[6

—

[7

—

[8

[t}

[9]

[10]

(11]

[12]
[13]
[14]

[15]



[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23

[utr?

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31
[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

M. Li, S. Khan, Z. Shi, N. Wang, H. Yu, and Q. Xu, “Deepgate:
Learning neural representations of logic gates,” in Proceedings of the
59th ACM/IEEE Design Automation Conference, 2022, pp. 667-672.
Z. Li, D. Wu, D. Wijerathne, and T. Mitra, “Lisa: Graph neural
network based portable mapping on spatial accelerators,” in 2022 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). 1IEEE, 2022, pp. 444-459.

Y.-C. Lu, S. Pentapati, and S. K. Lim, “VlIsi placement optimization
using graph neural networks,” in Proceedings of the 34th Advances in
Neural Information Processing Systems (NeurIPS) Workshop on ML for
Systems, Virtual, 2020, pp. 6-12.

Y.-C. Lu, S. Pentapati, and S. K. Lim, “The law of attraction: Affinity-
aware placement optimization using graph neural networks,” in Proceed-
ings of the 2021 International Symposium on Physical Design, 2021, pp.
7-14.

A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae et al., “Chip placement with
deep reinforcement learning,” arXiv preprint arXiv:2004.10746, 2020.
A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG
Rewriting: A Fresh Look at Combinational Logic Synthesis,” in Design
Automation Conference (DAC), 2006, pp. 532-535.

A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “Fraigs:
A unifying representation for logic synthesis and verification,” ERL
Technical Report, Tech. Rep., 2005.

A. Mishchenko et al., “Abc: A system for sequential synthesis and
verification,” URL hittp://www. eecs. berkeley. edu/alanmi/abc, vol. 17,
2007.

K. E. Murray et al., “VTR 8: High-performance CAD and Customizable
FPGA Architecture Modelling,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), vol. 13, no. 2, pp. 1-55, 2020.

W. L. Neto, Y. Li, P.-E. Gaillardon, and C. Yu, “Flowtune: End-to-end
automatic logic optimization exploration via domain-specific multi-armed
bandit,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2022.

Z. Shi, H. Pan, S. Khan, M. Li, Y. Liu, J. Huang, H.-L. Zhen, M. Yuan,
Z. Chu, and Q. Xu, “Deepgate2: Functionality-aware circuit representation
learning,” arXiv preprint arXiv:2305.16373, 2023.

M. Soeken, L. G. Amaru, P-E. Gaillardon, and G. De Micheli,
“Exact synthesis of majority-inverter graphs and its applications,” IEEE
Transactions on CAD (TCAD), 2017.

E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation delay
prediction for fpga hls using graph neural networks,” in Proceedings of
the 39th international conference on computer-aided design, 2020, pp.
1-9.

Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in Proceedings
of the 59th ACM/IEEE Design Automation Conference, 2022, pp. 61-66.
Z. Wang, Z. He, C. Bai, H. Yang, and B. Yu, “Efficient arithmetic block
identification with graph learning and network-flow,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 2022.
C. Wolf, “Yosys open synthesis suite,” 2016.

N. Wu et al., “High-level synthesis performance prediction using gnns:
Benchmarking, modeling, and advancing,” in Proc. DAC, 2022.

N. Wu et al., “Lostin: Logic optimization via spatio-temporal information
with hybrid graph models,” in Proc. ASAP, 2022.

N. Wu, Y. Li, C. Hao, S. Dai, C. Yu, and Y. Xie, “Gamora: Graph
learning based symbolic reasoning for large-scale boolean networks,”
DAC, 2023.

N. Wu and Y. Xie, “A survey of machine learning for computer
architecture and systems,” ACM Comput. Surveys, 2022.

N. Wu, Y. Xie, and C. Hao, “Ironman: Gnn-assisted design space
exploration in high-level synthesis via reinforcement learning,” in
Proceedings of the 2021 on Great Lakes Symposium on VLSI, 2021,
pp. 39-44.

X. Xu et al., “Standard cell library design and optimization methodology
for asap7 pdk,” in Proc. ICCAD, 2017.

J. Yin, Y. Li, D. Robinson, and C. Yu, “Respect: Reinforcement learning
based edge scheduling on pipelined coral edge tpus,” arXiv preprint
arXiv:2304.04716, 2023.

J. Yin and C. Yu, “Accelerating exact combinatorial optimization
via rl-based initialization—a case study in scheduling,” arXiv preprint
arXiv:2308.11652, 2023.

[40]

[41]

[42]

[43]

[44]

C. Yu, “Flowtune: Practical multi-armed bandits in boolean optimization,”
in International Conference On Computer Aided Design (ICCAD). IEEE,
2020, pp. 1-9.

C. Yu, M. Ciesielski, M. Choudhury, and A. Sullivan, “Dag-aware logic
synthesis of datapaths,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1-6.

C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proceedings of the 55th Annual Design Automation
Conference, 2018, pp. 1-6.

C. Yu and Z. Zhang, “Painting on placement: Forecasting routing
congestion using conditional generative adversarial nets,” in Proceedings
of the 56th Annual Design Automation Conference 2019, 2019, pp. 1-6.
G. Zhao and K. Shamsi, “Graph neural network based netlist operator
detection under circuit rewriting,” in Proc. GLSVLSI, 2022.



	Introduction
	Background
	Graph Learning on RTL Designs
	DAG-aware Logic Synthesis

	V2PyG Framework
	Overview
	Verilog to Graph Representation

	V2PYG RTL Augmentation
	Combinational Augmentation
	Sequential Augmentation
	Label Generation

	V2PYG Implementation
	Implementation
	User Example 1 - Combinational RTL Designs
	Equivalence Verification of Augmented Designs

	Conclusion
	References

