}'® « X)0000000000000000 ¢
X
o i baf °
. v
W NS pX
) &l 4 p
M BT m
el S b B
- = 10) @ b
> 4 | oy el °
4 G ey AV
T s a 1=y
4 Jx y
3 b 9 b e
gt 1 (et atad
L 2l b < > ¢
g L e i
= 3 st 3
‘uv 7’ = £
i 4 #47
¢ un(hn) 0.8 0.4
L[hHW II'“ O " O
L) ® ¢ ° ° ®
e o o o o J) &8 0)
C 880
5880
Re 080088y
5

JULY 9-13, 2023
MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

MATION
FERENCE

6
= 2z
< S
) @
=
Z

AU
co

Y 3)
75/ =] 3
H N ’;
His = H
%) (S \ = -.‘;_ ff
&) e v
: . u
THE

UNIVERSITY

WHERE

INNOVATION
BEGINS

Gamora:
Graph Learning based o

NVIDIA.

Symbolic Reasoning for =328
Large-Scale Boolean Networks

Nan Wu}, Yingjie Li?, Cong Hao3, Steve Dai4, Cunxi Yu?, Yuan Xie5

WUniversity of California, Santa Barbara, >2University of Utah, 3Georgia Institute of Technology,

4NVIDIA, 5Alibaba DAMO Academy

O 0 O 0
) e ‘o o o e
XX, ® 0

Outline

Motivation

Problem formulation
o What is Gamora?
o Why Gamora?
o How Gamora?

Evaluation
o High reasoning accuracy
o Scalability
o Generalization

Verification is Important!

Hardware and Software Development Efforts for Advanced Designs

500 -
Verification takes half of hardware

400
S development cost!
¥ 300- Software
7] Verification
S 200-

Physical
100 Architecture
. ‘ === [P Qualification

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm

Technology node

O Frank Schirrmeister, Pete Hardee, Larry Melling, Amit Dua, and Moshik Rubin. Next Generation Verification for the Era of Al/ML and 5G.
to‘ https://dvcon-proceedings.org/document/next-generation-verification-for-the-era-of-ai-ml-and-5g/

https://dvcon-proceedings.org/document/next-generation-verification-for-the-era-of-ai-ml-and-5g/

Verification is Important!

30%

25%

N
S
S

Percentage of Design
Projects

Percentage of Project Time Spent in Verification

ASIC/IC
2014: Average 57% — te
2016: Average 54% o
2018: Average 53%
2020: Average 56%

~—

® (0%, 20%] (20%, 30%] (30%, 40%] (40%, 50%] (50%, 60%] (60%, 70%] (70%, 80%] > 80%

30%

25%

20%

15%

10%

5%

0%

FPGA

2014: Average 46%
2016: Average 49%
2018: Average 50%
2020: Average 51%

2014
— 2016
2018
— 2020

(0%, 20%)] (20%, 30%] (30%, 40%]

(40%, 50%]

Verification dominates the project time!

Harry Foster. The 2020 Wilson Research Group Functional Verification Study.

(50%, 60%]

(60%, 70%]

(70%, 80%]

> 80%

Functional Unit Identification

Identifying functional units from flattened gate-level netlists has wide
applications

Functional Unit Identification

Identifying functional units from flattened gate-level netlists has wide
applications

Word-level abstraction for formal verification

Bit-level implementation

S I
b63 out63 A
ab3
o ’%D-— out62 B
ab2

b0 —
a0 ——

OuT

— out0

Functional Unit Identification

Identifying functional units from flattened gate-level netlists has wide
applications

Word-level abstraction for formal verification

Functional verification

[TCAD’17] Fast algebraic rewriting based on and-inverter graphs

[ICCAD’18] PolyCleaner: clean your polynomials before backward rewriting to verify million-gate
multipliers

[DAC’19] RevSCA: Using reverse engineering to bring light into backward rewriting for big and dirty
multipliers

[TCAD’19] Understanding algebraic rewriting for arithmetic circuit verification: a bit-flow model

Functional Unit Identification

Identifying functional units from flattened gate-level netlists has wide
applications

Word-level abstraction for formal verification
Functional verification

Logic optimization and datapath synthesis
o [DATE’15] A universal macro block mapping scheme for arithmetic circuits

Functional Unit Identification

Identifying functional units from flattened gate-level netlists has wide

applications

Word-level abstraction for formal verification

Functional verification

Logic optimization and datapath synthesis

Hardware trojan detection
[DAC’19] Attacking split manufacturing from a deep learning perspective

[JETC’21] Hardware trust and assurance through reverse engineering: A tutorial and outlook from image
analysis and machine learning perspectives

Challenges in Conventional Methods

Structural methods
o Focus on circuit topology
o Efficient with customized algorithms
o Often mathematically incomplete, rely heavily on reference circuits (%)
o Memory-consuming for large Boolean networks with billions of nodes (X]
o Example: [HOST’13] Wenchao Li et al. Wordrev: Finding word-level structures in a sea of bit-level gates

Functional methods
o Functionally analyze the circuit for potential arithmetic components
o Accurate and solver-ready @&
o Ultra-long runtime €

o Example: [TETC’13] Pramod Subramanyan et al. Reverse engineering digital circuits using structural and
functional analyses

Solution: Gamora

Graph Learning based Symbolic
Reasoning for Large-Scale Boolean
Networks

Why Gamora?

Graph Learning based solution:
Gate-level netlists are naturally represented as graphs
Alternate solutions to recognition and classification

Make better use to modern computing systems = better scalability

Why Gamora?

Successful examples using graph learning:
Classify sub-circuit functionality from gate-level netlists
[TCAD’21] GNN-RE: Graph neural networks for reverse engineering of gate-level netlists

Predict boundaries of arithmetic blocks
[ICCAD’21] Graph learning-based arithmetic block identification
Predict the functionality of approximate circuits
[ICCAD’22] AppGNN: Approximation-aware functional reverse engineering using graph neural networks

Analyze impacts of circuit rewriting on functional operator detection
[GLSVLSI’22] Graph neural network based netlist operator detection under circuit rewriting

How Ga ra?

Symbolic reasoning requires structural and functional information from
neighborhood nodes

Reasoning can be formulated as node-level classification in graphs

Message-passing mechanism in GNN computation:

Simultaneously handling structural and functional information from Boolean networks
Analogous to symbolic propagation and structural hashing

How Gamora?

Conventional methods

Structural hashing + functional propagation

Low scalability
Low parallelism

Flattened gate-level netlist in
And-Inverter Graph (AIG)

How Gamora?

Conventional methods

© Structural hashing + functional propagation
~ Low scalability
~ Low parallelism

Flattened gate-level netlist in
And-Inverter Graph (AIG)

How Gamora?

Node features to
encode Boolean
functional BN
é

information \

Conventional methods

© Structural hashing + functional propagation
~ Low scalability
~ Low parallelism

How Gamora?

Node features to :
encode Boolean Yo,1,1] Conventional methods

functional -
information \[} 1, 1] Structural hashing + functional propagation
h Low scalability

mm | T, [1.0,0]

| . Low parallelism
[1,1,1] .
[A \\\
Our solution: GNN
[1I 1, 1] [1\,\0, 0]
[0, 0, O] [0,0, 0] [0, 0, 0]

HT] ®HI11 =1

N

PI/PO or Input edges
intermediate node? complemented
B or not?

How Gamora?

Node features to :
encode Boolean Conventional methods
!L'....

functional

information o Structural hashing + functional propagation
~ Low scalability

~ Low parallelism

- Message-passing mechanism: functional and

structural aggregation @

T
\
—»/-

How Gamora?

Node features to
encode Boolean ' Conventional methods

functional BN
information \ e, Structural hashing + functional propagation
P Low scalability
] HEN :
~ Low parallelism
/"\ \\\\ _
F\~\ \\ . . .
E-; > EEN S Message-passing mechanism: functional and
‘ structural aggregation
ET] ®E11 BT Strong scalability

Better utilization of modern compute platforms

How Gamora?

How to handle laRge-scale BooleAn networks?
© GNN has better support from modern computing systems = GPU acceleration
o Node-level, model-level, and graph-level parallelism = Billion-node scalability

Multiplier Verification

Integer multipliers are ubiquitous components
o Advanced multipliers, such as Booth multipliers, are difficult to verify.
o [FMCAD’21] Sound and automated verification of real-world RTL multipliers

Large multipliers are important in homomorphic encryption
o [ISCAS’14] Practical homomorphic encryption: A survey
o [CSUR’18] A survey on homomorphic encryption schemes: Theory and implementation

CCC.!!@--'@\{ -aﬂl% /e A

ANIMATION COMPUTER MUSIC VIDEO AUDIO E-MAIL STREAMING GAMING INTERNET

Multiplier Verification

Our goal: identify the adder tree in flattened/bit-blasted multiplier netlists

Essential step in symbolic computer algebra for multiplier verification

Single Adder Extraction

~ A full adder has a SUM and a CARRY

Single Adder Extraction

A full adder has a SUM and a CARRY
SUM = XOR3(1,2,3)

Single Adder Extraction

A full adder has a SUM and a CARRY
SUM = XOR3(1,2,3)

(a) AIG (b) OUT6=XOR(1,2)
OUT9=XOR(6,3)

Single Adder Extraction

A full adder has a SUM and a CARRY
SUM = XOR3(1,2,3)

ouT9

(a) AIG (b) OUT6=XOR(1,2) (c) OUT9 = XOR3(1,2,3)
OUT9=XOR(6,3)

Single Adder Extraction

A full adder has a SUM and a CARRY
SUM = XOR3(1,2,3)
CARRY = MAJ3(1,2,3)

ouTs CARRY * SUM
MAJ3(1, 2, 3) XOR3(1, 2, 3)

/ 1 / 1
\ \
4 \ 4 \
/ < 4 <
\ AY
\ \
\ \
\ \
7 ~ \\ ' ~ \\
7 ~ 7 ~
7 ~ \ 7 ~ \
7 ~ \ 7 ~ \
\ \
\ AY
\ \
\ \
~ \ ~ \
! S~o \ ! ~< \
- <
@ &) IN1 IN2 IN3

(a) AIG (b) OUT6=XOR(1,2) (c) OUT9 = XOR3(1,2,3) (d) AIG of a full adder
OUT9=XOR(6,3)

B

>
A

D)
A
12
- - -~
—————

<>,
A
7

er

AIG of 3-bit multipli

Example

Adder Tree Extraction

D)
A

G
A

Adder Tree Extraction

Example: AIG of 3-bit multiplier

find XOR nodes

Step 1

Adder Tree Extraction © @ ® <«

A A A

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes

XxorR @

Step 2: find MAJ nodes

ma) @D

Adder Tree Extraction © @ ® <«

A A A

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes
XOR @P

Step 2: find MAJ nodes

ma) @D

Step 3: find boundary

Root @D @D

Adder Tree Extraction

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes
XOR @P

Step 2: find MAJ nodes

ma) @D

Step 3: find boundary

Root @D @D

° -

()]

Adder Tree Extraction © © @ @ @ «©

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes
XOR @P

Step 2: find MAJ nodes
ma) @D

Step 3: find boundary
Root @D ELD

/7
/7
/7
(C 24 45)

36_37

Can we simultaneously
perform multiple steps?®

Solution: Multi-task GNN

Structural info
AlG topology

AlG

Functional info
* PI/PO/intermediate
nodes
* Whether each input
edge is complemented

GraphSAGE

Task 1: XOR
classification

Task 2: MAJ
classification

Task 3: Root
classification

Multi-label
annotated
AlIG

Adder
extraction

Solution: Multi-task GNN

Structural info
AlG topology

AlG

Functional info
* PI/PO/intermediate
nodes
* Whether each input
edge is complemented

* Fuse structural and functional information
* Neighbor sampling and aggregation to get node
embeddings
hir sy < AGGREGATE ({h¥™1, vu € N (v)})
h¥ « o(W¥ - CONCAT(hE™, R (1))

o mm Ed OO 0Om 0O4m

Solution: Multi-task GNN

Multi-task learning
Knowledge sharing across tasks to guarantee
reasoning precision
Improve sample efficiency during training
Loss function:
L=a - £GLy) +B-€£(52,y2) +v-£(53,3)
e e e

Task 1 Task 2 Task 3

Task 1: XOR
classification

Task 2: MAJ
classification

Task 3: Root
classification

Multi-label
annotated
AlIG

Adder
extraction

Experiment Setup

AlG-based multiplier netlists
Carry-save-array (CSA) multipliers
Booth-encoded multipliers

Technology mapping
The reduced standard-cell library mcnc.genlib (with gate input size <=3) from SIS distribution
ASAP 7nm technologies

Baseline & ground truth
Logic synthesis tool ABC, using the adder tree extraction command
[TCAD’17] Fast algebraic rewriting based on and-inverter graphs
[TCAD’19] Understanding algebraic rewriting for arithmetic circuit verification: a bit-flow model

Gamora is trained with small bitwidth multipliers (typically less than 32-bit) and
evaluated on large bitwidth multipliers (up to 2048-bit)

Evaluation: CSA Multiplier

Single Task Single Task Multi Task Multi Task
Structural Info Structural + Functional Info Structural Info Structural + Functional Info
‘/‘/k*fl—*l——‘——i (R [SR Lo 100
70
e\c: [o O o o o - = | 80 80 997
> 60_
(8}
e
3 — /"—.—H 987
2 50 :r 'f 72 jf 'f 72 jf 'f P
38: .\.\'\I\._._._.' 40: '_\-\.\.\._H’ 40: -\'\-\-\H—‘-—.' 50:
37 | | | | | | | | 37 | | | | | | | | 37 | | | | | | | | 49 | | | | | | | |
12 16 32 64 128 256 384 512 12 16 32 64 128 256 384 512 12 16 32 64 128 256 384 512 12 16 32 64 128 256 384 512
Bitwidth of Multipliers Bitwidth of Multipliers Bitwidth of Multipliers Bitwidth of Multipliers
—=— Mult2 —=— Mult4 —=— Multé —=— Mult8 --A-- Multl0
Sensitivity analysis on carry-save-array (CSA) multipliers
* Single- and multi-task
e With and without functional info
* Different training size (2-bit to 10-bit)
0O

Evaluation: CSA Multiplier

Accuracy (%)

Single Task
Structural Info

Single Task
Structural + Functional Info

Multi Task
Structural Info

r------------------

J

Multi Task
Structural + Functional Info

NN

38 - 88 ioo_ _______ -
‘/‘/k,k*!—‘-‘l——*—" !
70 |
I99
== % = = = = u|80- 807 :
60_ I
|
L e /"—'—'—' 198 -
504" %= = = s w u|/27 72 I
> > » b4 P4 al 7
e e Ve e Ve /1 e
38— .\.\.\I\._._._. 40_ -\-\-\'\.*._._. 7 -\-\-\l\‘_‘___-_. I50_
|
|
37 I I I I I I I I 37 I I I I I I I I 37 I I I I I I I I l4q I I I I I I I I
12 16 32 64 128 256 384 512 12 16 32 64 128 256 384 512 12 16 32 64 128 256 384 5124 i2 16 32 64 128 256 384 5121
Bitwidth of Multipliers Bitwidth of Multipliers Bitwidth of Multipliers ! Bitwidth of Multipliers J
—=— Mult2 —=— Mult4 —=— Multé —=— Mult8 --A-- Multl0

Sensitivity analysis on carry-save-array (CSA) multipliers

Single- and multi-task
With and without functional info
Different training size (2-bit to 10-bit)

Multi-task,

structural + functional info,

8-bit mult

Evaluation: Booth and Tech Mapping

CSA Multiplier CSA Multiplier Booth Multiplier Booth Multiplier

Simple Tech Mapping 7nm Tech Mapping 9 Simple Tech Mapping 97 7nm Tech Mapping
100.0 - o6 o Mult8 |
=2 Mtz ﬁﬁﬁ
——
99.9 7 :+ Mut20 96 -
94 L o Mult4l} 97
99.8

—@m— Mult8 —=— Mult20
—=— Multl2 —s=— Mult24 95 —
—=— Multl6 . Trained w/o
95 tech mapping

99.7

99.6

: ././.A_._._H—l—l—l—l 94 -
‘II ". —a— MU:tg 7 ' //.—'_.\-\-\._.ﬂ-—-\.
— v —=— Mult 14 r'e
99.5 -_‘ A Mult8 64 — 93 P g =
“ . Trained w/o oS- G---0-"0--0--0-0-o 93 Il = Mult8 —=— Mult20
99.4 * tech mapping i e
. 62 'YT
<«
O

Accuracy (%)

| &= Multl2 —=— Mult24
—m— Multl6 —=— Mult28

| |

coON O O 0N O O ¥ @ O N O O ¥ 0N O O 50 %00 O N O O < © O N O© O ST OoN O O ¥ ©

AN OO D AN Ost 4 IN X O O AN OO I N O < -+ N ‘g' O AN O LD NN O T N OO N O S AN T O VO

— = N M MmN 1N n O NN N A N ™M M < N ‘l{a N N — < N M M N A N MO N < N n O NN
Bitwidth of Multipliers Bitwidth of; ' Mutipliers Bitwidth of Multipliers Bitwidth of Multipliers

.
.
“

CSA and Booth multlpl,ters ‘with simple and complex technology mapping
. Generallza,tlcm from small to large designs
. Generalization from before to after simple tech mapping

Evaluation: Runtime and Scalability

Runtime and GPU memory consumption

Runtime comparison between Gamora and ABC.
with batched reasoning.

106) 100 A R FonY/1g e
—=— ABC J A Runtime 3 t
; —A— Gamora [V| = 3.4e+0% = A100 GPU
10° |E| = 6.7e+07, 620 memory limit
hd
. o
: E ._H/.,./I/./.’-/./. £
10* - = p 310
~~ ™ 2
v : _§10—1_-’r./.,-/'/./. :
2 103 4 6 orders of : £ >
= . . (-4 ./-/./'/. g
2 magnitude : &
X 10% - £
. =
. o
u -
10! - STV o I B N O " 7T7T7TTTTTTT T T T 717711
- ARSI NBRINRBERIEIRR AR NEBRINBBREIE
v AANMOONOOAANTINONOOO A ANMINONOOOAANTINNONOOO
100_ K R K Ak__k__‘ YT A" HHI—ITTIT—:HHHN
AhhAhh b A i hhihhhhh—h—h—h—h—k -| Bitwidth of Multipliers Bitwidth of Multipliers
rT ~® bs=1 —® bs=4 —m— bs=8 —m— bs=16 —=— bs =32
SToNOVOTFTONOVOSTONOO S o o (e0] O AN [l o [oe]
OCANOAOINANOTANTOoOUOUMOLOAN LN [00] o ™M O (o)} [<
A AN ININDWONNOCDODWO O i [q\] < LN O N ()} o
L | L | L | L | Lo | i i (e}

Bitwidth of Multipliers

Further speedup with batched

ABC: a logic synthesis framework well adopted in academia reasoning on a single GPU.

R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
® verification tool”. International Conference on Computer Aided Verification.
b‘ ringer, 2010.

Summary

Gamora: a novel symbolic reasoning framework, which exploits GNNs to imitate
structural hashing and functional aggregation in conventional reasoning approaches.

o High reasoning performance that reaches almost 100% and over 97% accuracy for CSA and Booth-
encoded multipliers, which is still over 92% in finding functional modules after complex technology
mapping;

o Strong scalability to Boolean networks with over 33 million nodes, with up to six orders of magnitude
speedups compared to the state-of-the-art implementation in the ABC framework;

o Great generalization capability from simple to complex designs, such as from small to large bitwidth
multipliers, and from before to after technology mapping.

Gamora reveals the great potential of applying GNNs and GPU acceleration to speed up
symbolic reasoning, which is available at https://github.com/Yu-Utah/Gamora.

Thanks!

