


Gamora:
Graph Learning based 
Symbolic Reasoning for 
Large-Scale Boolean Networks
Nan	Wu1,	Yingjie	Li2,	Cong	Hao3,	Steve	Dai4,	Cunxi Yu2,	Yuan	Xie5
1University	of	California,	Santa	Barbara,	2University	of	Utah,	3Georgia	Institute	of	Technology,	
4NVIDIA,	5Alibaba	DAMO	Academy	



Outline

oMotivation
oProblem	formulation

oWhat	is	Gamora?	
oWhy	Gamora?
oHow	Gamora?

oEvaluation
oHigh	reasoning	accuracy
oScalability
oGeneralization



Verification is Important!

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm
0

100

200

300

400

500

Software
Verification
Physical
Architecture
IP Qualification

Hardware and Software Development Efforts for Advanced Designs

C
os

t 
($

M
)

Frank Schirrmeister, Pete Hardee, Larry Melling, Amit Dua, and Moshik Rubin. Next Generation Verification for the Era of AI/ML and 5G. 
https://dvcon-proceedings.org/document/next-generation-verification-for-the-era-of-ai-ml-and-5g/

Verification takes half of hardware 
development cost!

Hardware and Software Development Efforts for Advanced Designs
Co

st
 ($

M
)

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm
0

100

200

300

400

500

Software
Verification
Physical
Architecture
IP Qualification

Hardware and Software Development Efforts for Advanced Designs

C
os

t 
($

M
)

Technology node

https://dvcon-proceedings.org/document/next-generation-verification-for-the-era-of-ai-ml-and-5g/


Verification is Important!

Harry Foster. The 2020 Wilson Research Group Functional Verification Study. 

Verification dominates the project time!

2014: Average 46%
2016: Average 49%
2018: Average 50%
2020: Average 51%

ASIC/IC FPGA

Pe
rc

en
ta

ge
 o

f D
es

ig
n 

Pr
oj

ec
ts

Percentage of Project Time Spent in Verification

2014: Average 57%
2016: Average 54%
2018: Average 53%
2020: Average 56%



Functional Unit Identification
Identifying functional units from flattened gate-level netlists has wide 
applications



Functional Unit Identification
Identifying functional units from flattened gate-level netlists has wide 
applications
oWord-level abstraction for formal verification

s

out63

out62

out0

b63
a63

a62
b62

a0
b0

. . .

A

B

s

OUTMUX

int OUT = [
s : A;
1 : B;

];

Bit-level implementation Word-level abstraction



Functional Unit Identification
Identifying functional units from flattened gate-level netlists has wide 
applications
oWord-level abstraction for formal verification
o Functional verification

o [TCAD’17] Fast algebraic rewriting based on and-inverter graphs
o [ICCAD’18] PolyCleaner: clean your polynomials before backward rewriting to verify million-gate 

multipliers
o [DAC’19] RevSCA: Using reverse engineering to bring light into backward rewriting for big and dirty 

multipliers
o [TCAD’19] Understanding algebraic rewriting for arithmetic circuit verification: a bit-flow model



Functional Unit Identification
Identifying functional units from flattened gate-level netlists has wide 
applications
oWord-level abstraction for formal verification
o Functional verification
o Logic optimization and datapath synthesis

o [DATE’15] A universal macro block mapping scheme for arithmetic circuits 



Functional Unit Identification
Identifying functional units from flattened gate-level netlists has wide 
applications
oWord-level abstraction for formal verification
o Functional verification
o Logic optimization and datapath synthesis
oHardware trojan detection

o [DAC’19] Attacking split manufacturing from a deep learning perspective 
o [JETC’21] Hardware trust and assurance through reverse engineering: A tutorial and outlook from image 

analysis and machine learning perspectives



Challenges in Conventional Methods
o Structural methods 

o Focus on circuit topology
o Efficient with customized algorithms
o Often mathematically incomplete, rely heavily on reference circuits
o Memory-consuming for large Boolean networks with billions of nodes
o Example: [HOST’13] Wenchao Li et al. Wordrev: Finding word-level structures in a sea of bit-level gates

o Functional methods 
o Functionally analyze the circuit for potential arithmetic components
o Accurate and solver-ready
o Ultra-long runtime
o Example: [TETC’13] Pramod Subramanyan et al. Reverse engineering digital circuits using structural and 

functional analyses



Solution: Gamora

Graph Learning based Symbolic 
Reasoning for Large-Scale Boolean 
Networks



Why Gamora?
Graph Learning based solution:
oGate-level netlists are naturally represented as graphs
oAlternate solutions to recognition and classification
oMake better use to modern computing systems à better scalability



Why Gamora?
Successful examples using graph learning:
o Classify sub-circuit functionality from gate-level netlists

o [TCAD’21] GNN-RE: Graph neural networks for reverse engineering of gate-level netlists

o Predict boundaries of arithmetic blocks
o [ICCAD’21] Graph learning-based arithmetic block identification

o Predict the functionality of approximate circuits
o [ICCAD’22] AppGNN: Approximation-aware functional reverse engineering using graph neural networks

o Analyze impacts of circuit rewriting on functional operator detection
o [GLSVLSI’22] Graph neural network based netlist operator detection under circuit rewriting



Symbolic reasoning requires structural and functional information from 
neighborhood nodes
oReasoning can be formulated as node-level classification in graphs
oMessage-passing mechanism in GNN computation:

o Simultaneously handling structural and functional information from Boolean networks 
o Analogous to symbolic propagation and structural hashing

How Gamora?



How Gamora?

o Structural hashing + functional propagation
o Low scalability
o Low parallelism

Conventional methods

1 2 3

4 5

6

7 8

9
AND

Flattened gate-level netlist in
And-Inverter Graph (AIG)

INV



How Gamora?

1 2 3

4 5

6

7 8

9
AND

Flattened gate-level netlist in
And-Inverter Graph (AIG)

INV

Conventional methods

Our solution: GNN

o Structural hashing + functional propagation
o Low scalability
o Low parallelism



Conventional methods

Our solution: GNN

Node features to 
encode Boolean 

functional 
information o Structural hashing + functional propagation

o Low scalability
o Low parallelism

How Gamora?



How Gamora?
Conventional methods

Our solution: GNN

Node features to 
encode Boolean 

functional 
information

PI/PO or 
intermediate node?

Input edges 
complemented 

or not?

[0, 0, 0]

[1, 0, 0][1, 1, 1]

[1, 1, 1]

[0, 1, 1]

[1, 0, 0]
[1, 1, 1]

[0, 0, 0] [0, 0, 0]

o Structural hashing + functional propagation
o Low scalability
o Low parallelism



How Gamora?
Conventional methods

Our solution: GNN

Node features to 
encode Boolean 

functional 
information

o Message-passing mechanism: functional and 
structural aggregation

o Structural hashing + functional propagation
o Low scalability
o Low parallelism



How Gamora?
Conventional methods

Our solution: GNN

Node features to 
encode Boolean 

functional 
information o Structural hashing + functional propagation

o Low scalability
o Low parallelism

o Message-passing mechanism: functional and 
structural aggregation

o Strong scalability
o Better utilization of modern compute platforms



How Gamora?
oHow to handle laRge-scale BooleAn networks?

oGNN has better support from modern computing systems à GPU acceleration
oNode-level, model-level, and graph-level parallelism à Billion-node scalability



Multiplier Verification
o Integer multipliers are ubiquitous components

o Advanced multipliers, such as Booth multipliers, are difficult to verify.
o [FMCAD’21] Sound and automated verification of real-world RTL multipliers

o Large multipliers are important in homomorphic encryption
o [ISCAS’14] Practical homomorphic encryption: A survey
o [CSUR’18] A survey on homomorphic encryption schemes: Theory and implementation

Signal processing Homomorphic encryption



Multiplier Verification
Our goal: identify the adder tree in flattened/bit-blasted multiplier netlists
o Essential step in symbolic computer algebra for multiplier verification



Single Adder Extraction
oA full adder has a SUM and a CARRY



Single Adder Extraction
oA full adder has a SUM and a CARRY
o SUM = XOR3(1,2,3)

(a) AIG
1 2 3

4 5

6

7 8

9



Single Adder Extraction
oA full adder has a SUM and a CARRY
o SUM = XOR3(1,2,3)

1 2 3

4 5

6

7 8

9

(a) AIG
1 2 3

4 5

6

7 8

9

(b) OUT6=XOR(1,2)
OUT9=XOR(6,3)



Single Adder Extraction
oA full adder has a SUM and a CARRY
o SUM = XOR3(1,2,3)

1 2 3

4 5

6

7 8

9

(a) AIG
1 2 3

4 5

6

7 8

9

(b) OUT6=XOR(1,2)
OUT9=XOR(6,3)

IN1 IN2 IN3

OUT9

(c) OUT9 = XOR3(1,2,3)



Single Adder Extraction
oA full adder has a SUM and a CARRY
o SUM = XOR3(1,2,3)
oCARRY = MAJ3(1,2,3)

1 2 3

4 5

6

7 8

9

(a) AIG
1 2 3

4 5

6

7 8

9

(b) OUT6=XOR(1,2)
OUT9=XOR(6,3)

IN1 IN2 IN3

OUT9

(c) OUT9 = XOR3(1,2,3)
1 2 3

4 5

6

78

910
SUMCARRY

MAJ3(1, 2, 3) XOR3(1, 2, 3)

(d) AIG of a full adder



Adder Tree Extraction

10

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

11

12

1516

17

19 18

20

2223

24

25

2728

29

3940

3132

41

33

3435

36 37

4243

4544

46 47 48 49 50 51

Example: AIG of 3-bit multiplier



Adder Tree Extraction

10

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

11

12

1516

17

19 18

20

2223

24

25

2728

29

3940

3132

41

33

3435

36 37

4243

4544

46 47 48 49 50 51

XOR

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes



Adder Tree Extraction

10

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

11

12

1516

17

19 18

20

2223

24

25

2728

29

3940

3132

41

33

3435

36 37

4243

4544

46 47 48 49 50 51

XOR

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes

MAJ

Step 2: find MAJ nodes



Adder Tree Extraction

Root ID ID

MAJ

XOR

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes

Step 2: find MAJ nodes

Step 3: find boundary
10

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

11

12

1516

17

19 18

20

2223

24

25

2728

29

3940

3132

41

33

3435

36 37

4243

4544

46 47 48 49 50 51



Adder Tree Extraction

Root ID ID

MAJ

XOR

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes

Step 2: find MAJ nodes

Step 3: find boundary

20_25

12_10

24_22 29_27

36_37

44_45

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

46 47 48 49 50 51

FA

HA



Adder Tree Extraction

Root ID ID

MAJ

XOR

Example: AIG of 3-bit multiplier

Step 1: find XOR nodes

Step 2: find MAJ nodes

Step 3: find boundary

20_25

12_10

24_22 29_27

36_37

44_45

1 2 3 4 5 6

7 8 9 21 14 13 30 26 38

46 47 48 49 50 51

FA

HA

Can we simultaneously 
perform multiple steps? 



Solution: Multi-task GNN

Structural info
AIG topology

Functional info
• PI/PO/intermediate 

nodes 
• Whether each input 

edge is complemented

AIG Multi-label 
annotated 

AIG

Adder 
extractionGraphSAGE

Task 1: XOR 
classification

Task 2: MAJ 
classification

Task 3: Root 
classification



Solution: Multi-task GNN

Structural info
AIG topology

Functional info
• PI/PO/intermediate 

nodes 
• Whether each input 

edge is complemented

AIG Multi-label 
annotated 

AIG

Adder 
extractionGraphSAGE

Task 1: XOR 
classification

Task 2: MAJ 
classification

Task 3: Root 
classification

• Fuse structural and functional information
• Neighbor sampling and aggregation to get node 

embeddings
ℎ𝒩(#)
% ← AGGREGATE%({ℎ&%'(, ∀𝑢 ∈ 𝒩(𝑣)})
ℎ#% ← 𝜎(𝐖% 4 CONCAT ℎ#%'(, ℎ𝒩 #

% )

…



Solution: Multi-task GNN

Structural info
AIG topology

Functional info
• PI/PO/intermediate 

nodes 
• Whether each input 

edge is complemented

AIG Multi-label 
annotated 

AIG

Adder 
extractionGraphSAGE

Task 1: XOR 
classification

Task 2: MAJ 
classification

Task 3: Root 
classification

Multi-task learning 
• Knowledge sharing across tasks to guarantee 

reasoning precision
• Improve sample efficiency during training
• Loss function:

ℒ = 𝛼 $ ℓ &𝑦!, 𝑦! + 𝛽 $ ℓ &𝑦", 𝑦" + 𝛾 $ ℓ &𝑦#, 𝑦#

Task 1 Task 2 Task 3



Experiment Setup
oAIG-based multiplier netlists 

o Carry-save-array (CSA) multipliers
o Booth-encoded multipliers

o Technology mapping
o The reduced standard-cell library mcnc.genlib (with gate input size <=3) from SIS distribution 
o ASAP 7nm technologies 

oBaseline & ground truth 
o Logic synthesis tool ABC, using the adder tree extraction command
o [TCAD’17] Fast algebraic rewriting based on and-inverter graphs
o [TCAD’19] Understanding algebraic rewriting for arithmetic circuit verification: a bit-flow model

oGamora is trained with small bitwidth multipliers (typically less than 32-bit) and 
evaluated on large bitwidth multipliers (up to 2048-bit)



Evaluation: CSA Multiplier

Sensitivity analysis on carry-save-array (CSA) multipliers 
• Single- and multi-task
• With and without functional info
• Different training size (2-bit to 10-bit)



Evaluation: CSA Multiplier

Sensitivity analysis on carry-save-array (CSA) multipliers 
• Single- and multi-task
• With and without functional info
• Different training size (2-bit to 10-bit)

Multi-task, 
structural + functional info,

8-bit mult



Evaluation: Booth and Tech Mapping

CSA and Booth multipliers, with simple and complex technology mapping
• Generalization from small to large designs
• Generalization from before to after simple tech mapping



Evaluation: Runtime and Scalability 

6 orders of 
magnitude

Runtime comparison between Gamora and ABC. Runtime and GPU memory consumption 
with batched reasoning.

ABC: a logic synthesis framework well adopted in academia
R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength 
verification tool”. International Conference on Computer Aided Verification. 
Springer, 2010.

Further speedup with batched 
reasoning on a single GPU. 

Runtime



Summary
oGamora: a novel symbolic reasoning framework, which exploits GNNs to imitate 

structural hashing and functional aggregation in conventional reasoning approaches. 
o High reasoning performance that reaches almost 100% and over 97% accuracy for CSA and Booth-

encoded multipliers, which is still over 92% in finding functional modules after complex technology 
mapping; 

o Strong scalability to Boolean networks with over 33 million nodes, with up to six orders of magnitude 
speedups compared to the state-of-the-art implementation in the ABC framework; 

o Great generalization capability from simple to complex designs, such as from small to large bitwidth
multipliers, and from before to after technology mapping. 

oGamora reveals the great potential of applying GNNs and GPU acceleration to speed up 
symbolic reasoning, which is available at https://github.com/Yu-Utah/Gamora.



Thanks!


